

1

Snap4Tech

Data Analytics on Snap4City,
Machine Learning Operation

MLOps on Snap4City via ClearML

From Snap4City:

• Development Life Cycle user manual:
o https://www.snap4city.org/download/video/Snap4Tech-Development-Life-

Cycle.pdf

• See Client-Side Business Logic Widget Manual:
o https://www.snap4city.org/download/video/ClientSideBusinessLogic-

WidgetManual.pdf
• Videos and PDF of Training slides https://www.snap4city.org/944

• You may read the TECHNICAL OVERVIEW,

https://www.snap4city.org/download/video/Snap4City-PlatformOverview.pdf

• https://www.snap4city.org

• https://www.snap4solutions.org

• https://www.snap4industry.org

• https://twitter.com/snap4city

• https://www.facebook.com/snap4city

Coordinator: Paolo Nesi, Paolo.nesi@unifi.it

DISIT Lab, https://www.disit.org
DINFO dept of University of Florence,
Via S. Marta 3, 50139, Firenze, Italy
Phone: +39-335-5668674

Access Level: public
Date: 19-12-2024
Version: 0.7

https://www.snap4city.org/download/video/Snap4Tech-Development-Life-Cycle.pdf
https://www.snap4city.org/download/video/Snap4Tech-Development-Life-Cycle.pdf
https://www.snap4city.org/download/video/ClientSideBusinessLogic-WidgetManual.pdf
https://www.snap4city.org/download/video/ClientSideBusinessLogic-WidgetManual.pdf
https://www.snap4city.org/944
https://www.snap4city.org/download/video/Snap4City-PlatformOverview.pdf
https://www.snap4city.org/
https://www.snap4solutions.org/
https://www.snap4industry.org/
https://twitter.com/snap4city
https://www.facebook.com/snap4city
mailto:Paolo.nesi@unifi.it
https://www.disit.org/

2

Sommario

1. Overview .. 4

1.1 – Data Analytic Processes Possibilities .. 6

1.2 – Snap4City with DAP Container Manager, No MLOps Support 8

1.3 - Snap4City with MLOps Support, & DAP Container Mng: ML/AI.. 11

1.4 – Creation of Smart Applications using ML/AI supports. 13

2. MLOps in ClearML ... 18

2.1 – Managing an Experiment ... 18

2.1.1 – Credentials .. 18

2.1.2 – Initialization of an Experiment .. 18

2.1.3 – ClearML import .. 18

2.1.4 – Task Creation/Init .. 18

2.2 - Python Version and Package compatibilities in ClearML Agents 19

2.2.1 – Problems of compatibility among versions e packets Python 19

2.2.2 – Selection of Docker Image of the Agent for CPU Compatibility 19

2.3 - ClearML Basic Functionalities ... 20

2.3.1 - Log of the Hyper-parameters .. 20

2.3.2 - Log Artefa cts ... 20

2.3.3 - Add Artefacts .. 20

2.3.4 – Use the Artefacts ... 21

2.3.5 - Models ... 21

2.3.6 – Load of a model ... 21

2.3.7 - Log Metrics... 21

2.3.8 – Data types registered with Logger ... 21

2.3.9 – Automatic Recording of metrics ... 22

2.3.10 - Manual Recording of Metrics ... 22

2.3.11 - Pipelines .. 23

2.4 - ClearML Data ... 24

2.4.1 - Dataset Versioning ... 24

2.4.2 - Dataset Organization and Access .. 24

2.4.3 - Dataset Documentation and Tracking .. 24

2.4.4 - Using ClearML Data ... 25

2.4.5 - ClearML Data CLI .. 25

2.4.6 - ClearML Data SDK ... 27

2.4.7 - Graphic User Interface ... 29

3. ClearML - Experiment Comparison .. 31

3.1 - Experiment Table .. 31

3.2 - Experiments Leaderboard .. 31

3.3 - Select Multiple Experiments ... 32

3.4 - Detailed Comparison .. 33

3.4.1 - Comparison Modes .. 33

4. Hyperparameter Optimization... 38

4.1 - Supported Optimizers ... 40

4.1.1 - Comparison task .. 40

3

5. ClearML Feature Testing ... 42

5.1 - Dataset Versioning .. 43

5.2 - Comparing Experiments ... 43

6. Inference API ... 45

6.1 On-Demand API ... 45

6.2 API Task Enqueue ... 46

6.3 ClearML Utils ... 46

6.3.1 - Technology Used: Stack TALL and Filament .. 46

6.3.2 - Advantages of Filament .. 47

6.4 Main ClearML Dashboard ... 47

6.5 ClearML Serving Machine Management .. 47

6.6 On-Demand Endpoint Management ... 48

6.7 Task Management for the Task Enqueue Service ... 49

6.8 Service Call Logs .. 50

7. Use of Services AI/DA from IoT App/Proc.Logic ... 53

7.1 Authentication with Snap4City ... 55

7.2 Remote task notification system .. 55

7.2.1 - Executing the Task in Service Mode .. 55

7.2.2 - Integration with Skype .. 56

7.2.3 - Starting the Task .. 56

7.2.4 - Advantages of the SkPy Library: .. 56

8. Testing and Validation .. 58

8.1 Model Development and Training .. 58

8.2 Deploying the Model on ClearML Serving ... 58

8.3 Testing with Node-RED Block .. 58

8.4 Model Monitoring .. 59

4

1. Overview
The design and development of Data Analytics, DA, Processes (DAP) is mainly performed taking in mind
that their development cases are performed in Python or Rstudio. For DAP we intend the development
of algorithms for some computation: KPI, predictions, optimization, simulation, etc., exploiting ML
(machine learning), AI (artificial intelligence), XAI (explainable AI), operating research, statistics, etc.
 The DAPs can be devoted performing tasks of model training, model execution, computation,
simulation, etc., in batch or stream. The design of DAP implies to decide their aims, for example, for
implementing specific algorithms, or making predictions, anomaly detection, suggestions, statical
analysis, clustering, recognition, counting, classification, object detection, KPI estimation, optimization,
conversion, etc. Most of these aims can resolved by using techniques as ML, AI, XAI, NLP, operating
research, statistics, etc. To this end they would need to exploit a set of libraries for Python or RStudio to
produce a model (in a training phase) which in turn has to be saved to be later exploited in
execution/inference. Python and RStudio platforms may exploit any kind of libraries such as Keras,
Pandas, and hardware accelerator as NVIDIA to use Tensor Flow, and clusters of CPUs/GPUs, via ClearML,
MLOps, etc.
 Moreover, in order to get data, the DAP in Snap4City can access to any kind of storage from external
services and can access to the Snap4City KB (knowledge base, service map) and Big Data store. In that
case, the access to Snap4City data is GDPR compliant and thus respect the privacy, the data licensing by
using authenticated Smart City APIs, via some Access Token as explained in the Development Life Cycle
Manual mentioned in the cover. The platform allows the access to historical and real-time data, and
permits to save the resulting data produced by the algorithms, for example, heatmap-related predictions,
the assessment of data quality, traffic flow data, ODMs, labels of detected anomalies, etc., also using
some specific APIs.

For the analysis details are reported in the Development Life Cycle and for a DAP one should identify:

• What process must be implemented by the DAP?

• Which data models would be produced?

• Which data are needed?

• The DAP to be implemented is for training or for production?

• How many users are going to exploit the DAP at the same time? How many executions per minute
or per day?

• How many processes for production I am going to have at the same time?

• From where the DAP is expected to be called, from a Dashboard/view? or simply from a back-
office process as a MicroService?

• Which is the expected execution time?

• Which is the expected precision, and which is the state of the art?

• Do I need to execute the DAP exploiting special hardware as NVIDIA since I am going to use CUDA,
tensor flow, …?

How to proceed to design the single DAPs according to its nature?
Here in the following the most relevant tasks summarized, just to recall you the main aspects to be
addressed:

• Problem analysis, business requirements.

• Data Discovery, Data ingestion, acquisition (as above presented that can give for granted), data
access from Snap4City platform or from other sources.

• Data set preparation, transformation, identification of features, normalization, scaling,
imputation, feature engineering, etc., eventual data ingestion to the Snap4City platform by using
Proc.Logic or python and then storing data in the storage. The process of feature engineering
may be performed by mean of PCA, of directly performing the first training and assessing the

5

relevance of the features, may be discharging those less relevant.

• Target Assessment Model Definition (mandatory to assess the precision of the results, t he quality
of the solution produced)

o Identification of metrics for the assessment, KPI.
o Typically: R2, MAE, MAPE, RMSE, MSE, MASE, MAPE, …

• Screening on Models/Techniques, for each Model/Technique or for the selection
Model/Technique perform the

o Model/Technique Development/testing
o Performing for each of them some hyper-parametrization

• Best Model/solution selection among those tested
o If needed reiterate for different parameters, features, etc.
o Comparison with state-of-the-art results.
o Needs of Explainable AI solutions: global and local.

• Deploy best Model/solution in production, monitoring in production. In this phase assumes
particular relevant:

o Security of data and solution
o Scalability of the solution, in terms of multiple users requesting the same computation,
o multiple requests of the same computation but working on different spatial area, such

difference cities, KB, maps, graphs, time series, etc.

In conclusion, the main activities are those of Development and Execution.

6

1.1 – Data Analytic Processes Possibilities
According to the kind of DAP support provided by the Snap4City platform you are using, the develop and
the execution of DAP solutions can be performed and enforced in different manners, but it is any way
possible to put in execution your DAP on Snap4City. The Snap4City DAP support is provided by means of
a few different solutions which can be classified according to the components installed, which may impact
the activities of Development and Execution in different manners.

The main components are:

• Local Development environment on your premise for Python and/or Rstudio.

• Jupiter HUB Server: a server providing development environment for Python with web interface

• R-Studio Server: a server providing development environment for Rstudio with web interface

• DAP Container Manager: A solution for creating Containers including DAPs and putting them in
execution on cloud. It can be based on Marathon/Mesos as well as Kubernetes or others.

• MLOps Support: A solution and tools to support developers in creating their DAPs, making
experiments, optimising, testing and validating them, keep track of the performed experiments,
etc., and also putting them in execution on some Container, exploiting also clusters of CPU/GPU.

• IoT App/Proc.Logic processes: A Node-RED + Snap4City Libraries process which can be installed
on premises or on cloud, which can exploit the Snap4City facilities: authentication and
authorisation, data ingestion, data transformation, management of DAPs, calling of DAPs,
interacting with dashboards (server-side business logic), interoperating with any kind of
protocols and formats.

• A&A, Authentication and Authorization mechanism of Snap4City or that of others interoperable
platforms.

• Advanced Smart City API, ASCAPI: a set of APIs to access/provide data from/to the Snap4City
platform, as REST Call, microservices.

The main cases can be (starting from the less comprehensive to the most):

A. Snap4City platform having: No DAP Container Manager, No Jupiter HUB Server, No R-Studio Server,
No MLOps Support. In this case, the developers can develop their DAPs in the language they prefer,
on some server or on their laptop.

1. Once developed the DAP, it can be exploited by the Snap4City platform by making the DAP
accessible via some API, or by using some data exchange via database or other means which
can be controlled and exploited by some IoT App/Proc.Logic or Dashboard/View. If the DAP
exposes some APIs, we suggest using Flask for Python and Plumber for Rstudio. In this case,
the IoT App/Proc.Logic/Dash has to call the DAP as an external service.

i. The external DAP providing the API may be protected by some external A&A
mechanism. The IoT App/Proc.Logic can be connected using them.

ii. Please note that in the case of using External APIs from dashboards/views in
JavaScript from client side, you may need to expose the credentials on the web page.
So that, we suggest calling the external services APIs only from the IoT
App/Proc.Logic.

2. DAPs can exploit the Advanced Smart City API, ASCAPI, of Snap4City according to the
Development Life Cycle. DAPs can access to protected data according to A&A based on OAuth
as Access Dokens and GDPR, and can send data for their ingestion and save them into the
platform, etc. The usage of the APIs is described in the Development Manual.

i. The A&A for data access/save from IoT App/Proc.Logic is automated by the
Snap4City Libraries and can be performed one on Edge, and totally transparent for
the IoT App/Proc.Logic on cloud of Snap4City platforms, from MicroX to large
solutions.

ii. The A&A for Snap4City Dashboards/views is also automated and may have JavaScript
developed as Client-Side Business logic, see reference manual mentioned on cover

7

of this document.
iii. The A&A for third party applications can be developed according to the Development

Life Cycle manual.

B. Snap4City platform with DAP Container Manager, No MLOps Support. In this case, the DAP
Container Manager is integrated into the Snap4City platform accessible (typically based on
Marathon/Mesos, and more recently also in Kubernetes). For the final user and for the developer the
usage of one kind of DAP Container Manager or of another it should not be of great relevance and/or
impact.

1. DAP Container Manager based on Marathon/Mesos: provided on Snap4City.org. The
developers have to code DAPs as API based processes, which expose their APIs via Flask for
Python and Plumber for Rstudio according to Snap4City directives, see Development Life
Cycle Manual and examples on web portal and training course.

i. The developers may have access to one or more Jupiter HUB Servers and R-Studio
Servers, for DEP developing, or can develop the DAPs on their laptops/desktop. This
means that the activities of tuning, hyper-parametrization, validation, etc., are all
performed by coding.

ii. Once a DAP is developed according to the Snap4City directives for DAP
development, it could be put in Execution. To this end, the:

1. (B) in the following figure: DAP is put in execution on some server to
expose the APIs which can be used by any IoT App/Proc.Logic as in A.1 case,
above. In this case, the DAP can exploit the direct resources of the server,
even NVIDIA boards, HPC, etc., if provided. In the cases of Snap4City.org,
these kinds of DAPs can exploit (i) a large number of NVIDIA servers with
huge number of GPUs, (ii) use external API of third party, (iii) exploit the
Smart City APIs.

a. The API based DAPs could be made accessible for Dashboards
exposing the API on Internet. On the other hand, this may create a
door for eventual attacks and unauthorized access to the DAPs.

b. The API based DAPs should be protected in some manner. For
example, working only if the DAP receives a valid Access Token
(taken from the section), by which it can access via ASCAPI to
protected content.

2. (A) in the following figure: DAP code is loaded on the DAP Container
Manager Marathon/Mesos via special Snap4City DA nodes for IoT
App/Proc.Logic (available on IoT App advanced, for developers, typically
accessible for AreaManager users). Those nodes request to the DAP
Container Manager to automatically create a container and allocate it
statically on cloud. Please note that, each new DAP has a counterpart node-
red node into the IoT App/Proc.Logic flow which created it and is realized
as a new container. The container of the DAP is only accessible/visible for the
user who created it (which can list them on the IoT App/Proc.Logic list,
where it can also be deleted/managed).

a. This approach is suggested to be used only for realising prototypes
and not for realising stable production DAPs due to its limited
scalability and high consumption of resources. Moreover, the DAP
container in this case is usable only by the IoT App of the user who
create it.

b. DAP may use the NVIDIA support only if provided at cloud level on
any DAP container. Images of DAP containers need to be customized
for adding specific libraries, and the exploitation of NVIDIA boards.
Please note that this approach on Snap4City.org does not allow to
the DAP to exploit the NVIDIA cluster facilities of Snap4City.

8

c. For example via

2. DAP Container Manager based on Kubernetes:

i. ……….description will come…
ii. .

iii. .

C. (C) in the above figure: Snap4City platform with MLOps Support and its integrated DAP Container
Manager. This case represents the most advanced solution for DAP development and execution as
described in detail in this document and described as concept in Section 1.3.

1.2 – Snap4City with DAP Container Manager, No MLOps Support
In this case B) depicted in the above figure and described above, the data scientists may develop their
DAPs on the provided Jupiter HUB, as a python development environment, as well as on Rstudio Servers.
In this kind of Snap4City platform, the development of DAPs can be performed on Jupyter HUB in Python
as well as on Rstudio Servers by using ASCAPI:

• provided by Snap4City, in this case the Jupyter HUB can be on a CPU server or on a CPU/GPU server

• not provided by Snap4City, not accessing to the resources CPU/GPU of Snap4City

In Snap4City, the access to Jupiter HUBs for Python and/or Rstudio Servers for the development of DAP
is provided by the RootAdmin. The role of the Snap4City users has to be AreaManager or higher.

Please note that, in this case, the activities of training, optimisation, hyper-parametrization, experiment
tracking, assessment and validation, comparison, tuning, etc., are all in the hands of the developers.
On the other hand, the activity to put DAP in production is simplified. In the sense that, the DAP can be
taken in charge by the DAP Container Manager for the execution.

The DAPs can be executed on:

• Dockers Containers accessing and controlling them via some API, and these can be automatically
produced and manage by the platform.

o In this case, the management is typically performed by some Proc.Logic (IoT App).
o The containers are automatically allocated on cluster and maintained alive to be used by

Marathon or Kubernetes and may exploit the GPU/CPU according to the configurations. They
are usually allocated dynamically, and they are moved from one VM to another by the DAP
Container Manager.

• Dedicated servers for developers and leaving them to access to the storage for using the data and

9

providing results via Snap4City API, in authenticated and authorized manner.

Figure – Schema of DAP/Data Analytics (ML, AI) development
to be used as permanent Containers (exploiting CPU on cloud)

Figure – DAP development in R-Studio, similar to Python which is in Jupiter HUB

In Python and/or RStudio cases, the script code has to include a library for creating a REST Call, namely:
Plumber for RStudio and Flask for Python. In this manner, each process presents a specific API, which is
accessible from an IoT App/Proc.Logic as a MicroService, that is, a node of the above-mentioned Node-
RED visual programming tool for data flow. Data scientists can develop and debug/test the data analytic
processes on the Snap4City cloud environment since it is the best way to access at the Smart City API
with the needed permissions. The source code can be shared among developers with the tool “Resource
Manager”, which also allows the developers to perform queries and retrieve source code made available
by other developers.
Rstudio and Python data analytics processes may include conceptually any kind of libraries for ML, AI,
operative research, simulation, etc. On the other hand, when the process is adopted to produce a
container, as in the next figure, the container has to include the library used in the code. The Development
environment may be configured to allow at the single operators to load their own preferred libraries. Or
requested libraries in the containers may be added by the RootAdmin. This can be performed by
requesting a specific image to the platform manager and indicating the library you would like to have on
Container executions.

10

Figure – Case B) DAP development flow in Python, from a Jupyter hub as well as from PC with

Anaconda development environment installed.

This description of the flow refers to case in which the Python or Rstudio are created to be used as
MicroServices from a Proc.Logic/IoT App. An alternative is to develop the DAPs to be used as standalone
services, working on API, or providing some REST Call, and thus usable from Proc.Logic/IoT App according
to the API or by collecting results on database. These aspects are described into the training course.

Figure– Data Analytics development flow in Python and integration into Proc.Logic / IoT App.

In Snap4City, there is a specific tutorial for the Data Analytic development with several examples:
https://www.snap4city.org/download/video/course/p4/
Read the mentioned slide course and/or platform overview to get a list of Data Analytics in place:
https://www.snap4city.org/download/video/Snap4City-PlatformOverview.pdf
We also suggest reading the Snap4City booklet on Data Analytic solutions.
https://www.snap4city.org/download/video/DPL_SNAP4SOLU.pdf

Read more on: https://www.snap4city.org/download/video/course/p4/

https://www.snap4city.org/download/video/course/p4/
https://www.snap4city.org/download/video/Snap4City-PlatformOverview.pdf
https://www.snap4city.org/download/video/DPL_SNAP4SOLU.pdf
https://www.snap4city.org/download/video/course/p4/

11

If you are interested to develop ML/AI processes with or without MLOps support, there is Python library
which can be obtained only via subscription please contact snap4city@disit.org

1.3 - Snap4City with MLOps Support, & DAP Container Mng: ML/AI..
In this case C) of the above list, the solution provided by Snap4City includes the support for MLOps,
Machine Learning Operation. In Snap4City, the MLOps is provided by using a custom version of ClearML
tool and by using a Jupiter HUBs for Python to develop DAPs. The access to this facility can be provided
by the RootAdmin to AreaManager role of users or higher.

Snap4City with MLOps facility fully supports the phased of Development and Execution as described in
the following.

Development, with the activities of:

o Training with different parameters and models to be trained, hyper-parametrization, tuning, etc.
o Validation and test in batch to find the best results wrt metrics, tracking and comparing the

experiments, etc.
o Managing high computational costs, managing time consumptions, sending DAP automatically on

free GPU/CPU of clusters, etc.
o And many other functionalities as described in the following
o On this phase, Snap4City.org provides access to a Jupyter HUB from which it is possible to develop

the Python coded DAP, exploiting ASCAPI, and send them on MLOps Support, performed in
ClearML, to exploit a number of clusters in CPU/GPU with many kinds of NVIDIA boards: H100, VG
100, RTX 4090, RTX 3090, Titan XP, etc.

MLOps is realized by using ClearML, which has as main features:

• Experiment Tracking: Provides advanced features for experiment tracking, including automatic
logging of metrics, output, source code, and the execution environment. This ensures that each
experiment is reproducible, and its results are easily shareable and comparable.

• Data and Model Management: Provides tools for efficient management of datasets and models,
allowing for easy versioning, archiving, and sharing. Users can track model versions and easily
associate them with corresponding experiments.

• Integration and Compatibility: ClearML is designed to integrate with existing development
environments and tools, such as Jupyter Notebooks, TensorFlow, PyTorch, and many others, thus
supporting a wide variety of workflows and technology stacks.

• User Interface and MLOps Dashboard offers an intuitive dashboard that allows users to monitor the
status of their experiments in real time, view metrics and outputs, and manage resources and
execution queues, all from a single interface. Root user of ClearML has the possibility of observing
the activities of all the users/developers.

• Automation and Orchestration: It allows the remote execution of experiments on any machine and
distributes the tasks to be executed according to a system of queues and priorities. Also automating
Hyper-parametrization via Optuna.

Please note that, the development is performed on Jupyter Hub in the personal space of the developer
by enforcing a specific connection with the ClearML server (with the specific account of the Developer in
the ClearML environment) by using specific credentials and code calls for data, and processes as
described in the following. In the Snap4City.org version, for security reasons, only specific Jupiter Hubs
can exploit the connection with ClearML, they are typically under progressive backup on cloud, while
versioning is provided with SVN support. In principle any Python development environment could exploit
such as connection, while open to all would not be safe enough.
These aspects are described in the rest of this document.

mailto:snap4city@disit.org

12

Execution on production (for ML/AI also called Inference phase)

The Execution on production has to guarantee support for:

• Security of data and DAP solution access, permitted only to A&A users. Also in this case, the
developer, working on Jupyter Hub, can send the code to the MLOps only by using its specific
credentials and IDs.

• Scalability of the DAP solution, in terms of multiple users requesting the same computation at
the same time,

• multiple requests of the same time working on different spatial area, such difference cities, KB,
maps, graphs, time series, etc.

• monitoring the resource consumption in the terms of memory, storage, and CPU/GPU
clocks/percentage. Eventual early warning and alarms sent to administrator. Possible the
accounting of resource consumed.

• Eventual block and removal of strange / non desired processes.

The Execution on production is enabled by creating DAPs (with a modality described in the rest of this
document) which can be called via some APIs (provided, made accessible) according to TWO
Modalities:

• Enqueue: to call the API of a DAP which is created as a task and executed at every API call by the
MLOps according to the list of requests. The DAP is allocated automatically on some server as
temporary container and process (NVIDIA / GPU, clusters or classic CPU clusters) by the MLOps
manager just for the single execution.

o This means that each DAP Execution includes the loading time, and that the DAP does not
remain in memory, and the memory of the servers (CPU/GPU) are not permanently booked
for that DAP.

o This approach is suitable for DAPs which are executed sporadically, and/or periodically for
which the overhead time to put them in execution is acceptable with the respect to the time
for computing and delivery of the response, and the period of execution.

• OnDemand: to call the API of a DAP which is created as a task into a container and load statically on
the server (NVIDIA / GPU, clusters or classic CPU clusters).

o This means that at the first execution the time to load will be evident and may be relevant.
o This means that, once loaded, the DAP is ready to respond to the API call since is statically

(permanently) allocated on the execution server, occupying memory (of CPU mem, GPU
video mem) and not the actual CPU/GPU, until is not called (wake up) via API.

o This modality is particularly suitable to exploit DAPs which need a relevant time to be loaded
and put in execution, thus making the usage of the Enqueue modality not viable. For

13

example, the usage of a LLModel needing 24 Gbyte would need lot of loading time, with
respect to its single execution time by using the OnDemand modality only in a few seconds.
So that in this case, the Enqueue solution is not suggested.

• On both these modalities, Snap4City.org provides access to exploit a number of clusters of services
and single servers in CPU/GPU with many kinds of NVIDIA boards: H100, VG 100, RTX 4090, RTX 3090,
Titan XP, etc.

The Snap4City platforms with MLOps support, may expose APIs of
the DAP in the two modalities of Enqueue and OnDemand which
can be called in authenticated manner via API as well as via IoT
App/Proc.Logic nodes, as reported on the right side.
The two nodes are accessible as a separate Node-RED library of
Snap4City microservices: https://flows.nodered.org/node/node-
red-contrib-snap4city-clearml which can be installed on any IoT
App/Proc.Logic on cloud and on Edge.

Please note that, the DAPs accessible via Enqueue or OnDemand modalities can be called from external
services as well. For security reasons they can be called only by using the current Access Token of the
section for the user. This allows to access at the DAPs from CSBL and any Web Application which is
developed according to the Snap4City Development model and CSBL approach on Dashboards and views.
This approach allows to implement much smarter and dynamic business intelligence tools and smart
applications.

1.4 – Creation of Smart Applications using ML/AI supports.
The design of the User Interface implies the design of dashboards/views to be developed. Snap4City
Dashboards/Views are composed by several graphical widgets accessing to: data Storages, Server side
Processing Logic (IoT App) data/nodes, External Services, Synoptics, and Brokers. Moreover, most of the
widgets may host JavaScript code, exploiting its functionalities and receiving events from others, to
enforce client-side business logic, CSBL. Those widgets and dashboards can be used to implement smart
applications of any kind.
How to proceed: This phase is performed by identifying Data Representation and Graphic User
Interaction:
This phase has to answer at questions such as:

• How many dashboards or view I need to create, how large they are, on which device they are
shown?

• The user interface is only a Monitoring data from Storage?

• Who is going to access to those dashboards?

• How much interactive and dynamic the views/dashboards should be?
o Do we need a menu to navigate on a number of connected Dashboards?

• Which kind of visual rendering is more adequate?
o Which kind of user interface I have to provide to the users?
o Which kind of graphic user interface your users would prefer?
o Which kind of widget? The answer is easy since the preferred rendering tool for each Data

Model has been defined.

• How many users are going to use the interfaces?
o It is a scenario for Control Room or for understanding (such as a Business

Intelligence tool to play with data and study)?

• Which Entity Instances have to be shown?

• The user interface has to provide data table for browsing on data? And in which order?

https://flows.nodered.org/node/node-red-contrib-snap4city-clearml
https://flows.nodered.org/node/node-red-contrib-snap4city-clearml

14

Passive and Active Dashboards/views
The Dashboards are composed by widgets. Each widget may represent several data and has a specific
graphic representation and user interaction. Before stating the design of the user interface, you have to
know the capabilities of the Snap4City Dashboards which are very wide providing almost any kind of
widgets and graphic representation for your data, and relationships among them to create not only good
representations but also a good interaction design, to specific what is going to happen interacting with
the graphic elements and data on your user interface.
In Snap4City, there is a specific tutorial for the Dashboard development with several examples and the
full list of capabilities in SLIDES: https://www.snap4city.org/download/video/course/p2/

Dashboard Widgets:

• are the main components of the Dashboards/views.

• can be created/edited from the Dashboard Builder, resized, placed, changed in color, etc.

• can be configured to perform a periodic refresh of their data recollecting them from storage/API.

• can be created/connected to Proc.Logic / IoT App.

• can be event driven, so that they are capable to update their data without forcing any refresh to
their data.

• can collected interaction from the user to send them on Client-/Server-Side Business Logic.

• can be controlled by other widgets.

• can be controlled by the Proc.Logic / IoT App which can command the widget to show specific
data from the storage, specific values, etc., and their combinations (Server-Side Business Logic).

• can be controlled by the Client-Side Business Logic, CSBL, in JavaScript coded in other on in the
same widget to send/receive command to show specific data from the storage, specific values,
etc., and their combinations, and also some computation, etc.

• can presents dynamically data on the basis of a parameter in the call itself via CSBL

• can exploit data analytics, ML, AI, and any processes provided via API, from CSBL.

• can open other dashboards

• etc.

The architecture of the Dashboard Builder is represented in the following Figure. The Dashboard

Builder is composed by three main blocks: the Widget Collection, the Dashboard Wizard, and the
Dashboard Editor (which includes the CSBL Editor).

The Dashboard Editor is used to create/modify dashboards (including their logic, visual analytics,
what-if tools, etc.), by collecting and configuring Widgets and their relationships, sizing and placing them
into dashboard canvas]. Each widget has a number of capabilities in presenting data, collecting data and
interacting with users and protocols. The Widget Collection includes several ready-to-use widgets and
custom widgets (that can be created for implementing new interactive graphic representations and
Synoptics by using any SVG graphic editor). Each Widget is realized as an independent module which can:
(i) present information to the user, (ii) get actions/interactions from the user, and (iii) interact back and
forward with different channels. Channels are implemented as protocols and formats and allow to exploit
storage systems (e.g., knowledge bases, relational DB, ODBC, JDBC, NoSQL API), any heterogeneous data
sources, connection protocols such as HTTP/ HTTPs, API REST, WebSocket, IoT Brokers API, API related to
ML/AI processes produce by some Data Analytics and from MLOps and thus which are running on some
CPU/GPU cluster or server, etc. Therefore, widgets can work/react in an event driven way by Web sockets,
and also access the historical data (time series) of sensors, maps, heatmaps, traffic flows, origin-
destination matrices (ODMs), as well as query GIS servers (e.g., a GeoServer via WMS, WFS protocols).
Such dashboard editing/creation is simplified by the Dashboard Wizard, by means of which users can
create/connect dashboards in a few steps, exploiting pre-build templates. Moreover, the related wizard
guides users in the selection of the most appropriate widgets for displaying the data of interest, or stating
from the preferred widget to identify the data which can be used for populating it, or stating from the
map to identify the data which are present in the area and the widgets for their rendering, etc. The Wizard

https://www.snap4city.org/download/video/course/p2/

15

assists users by reducing complexity, providing suggestions on finding combinations between data types
(time series, vectors, array, maps, trajectories, heatmaps, origin destination, point of interest, typical
trends, histograms, etc.), and graphic representations (trends, multi-trends, pie, donut, maps, chords,
hierarchies, solar, dendrograms, single content, Italian flag, traffic flow, 3D building, etc.). Once the
editing operation has been completed, users can save the related dashboard (with the possibility to
delegate it or grant access to different users) and it is made available in the dashboard collection.

Moreover, with the aim of enabling developers in using the Dashboard Builder to create custom visual
analytics, business intelligence, and what-if analysis tools, a flexible approach for modeling any business
logic is provided with two different manners: Server-Side Business Logic (SSBL) and Client-Side Business
Logic (CSBL). According to the SSBL approach, some graphic Widgets of dashboards have a counter part
in the Node-RED nodes and thus are regarded as MicroServices which the Node-RED can send data and
controls to, and which the Node-RED can receive events/actions from, as provided by users. This
approach allows the dashboard designer to create SSBL by using the visual programming in Node-RED.
This approach also implies that once a new widget node is deployed on a Node-RED flow, the related
widget is automatically created into the selected dashboard and a WebSocket secure connection is
established. The integration of Dashboards with Node-RED is also used to activate Data Analytics (data
processing with machine learning and artificial intelligence algorithms) based on user actions on
dashboards and/or scheduling in Node-RED. The CSBL approach is realized by coding segments of
JavaScript directly into the graphic interface configuration of widgets (green block in Figure).

The CSBL code can call: (i) any external APIs (purple blocks and arrows in Figure), (ii) any API and data
base services of the Snap4City platform (blue blocks and arrows in Figure), API related to ML/AI processes
produce by some Data Analytics and from MLOps and thus which are running on some CPU/GPU cluster
or server, and (iii) specific functions to send/receive commands and data to other widgets (green block
in Figure). This approach allows users who can interact with some widget graphic element (a line, a
legend, a bar, a pin on map, etc.) to activate a rendering, a computing, or a visualization on one or more
widgets in the dashboard, and even open another dashboard with some parameters. With a minimal
JavaScript programming capability to code the logic in these dashboards, a user can add intelligence
functionalities to any widget to retrieve data directly from internal and external sources and generate
and catch messages from other widgets in an event-driven way.

Figure – Dashboards / views and their connections with the platform and other services.

The dashboards can be classified into

• Passive Dashboards: showing data taken from Storage only, no actions toward Processing Logic (IoT
App) node-RED neither on custom JavaScript (ONLY BLUE ARROWs in the above figure):

o Passive dashboards may have widgets of any kind, and a lot of visualization tools without
changing the status of Entities on platform, nor sending commands to the Server Side.

16

o Passive dashboards are used to creates rendering views of the data in the storage and event
driven from their changes with some limited logic pre-coded in the dashboard. For example,
a Dashboard with a map and a menu from which the user may decide what is going to be
visualized in the page, to browse the data, and see the historical time trend of the time series,
etc.
o https://www.snap4city.org/download/video/course/p2/

• Active Dashboards, are those that show that from the storage and in addition send/receive
commands to/from the logic coded somehow (BLUE and GREEN ARROWS in the above figure) and in
particular for

o Server-Side Business Logic → logic on Processing Logic (IoT Apps) with Snap4City Dashboard
Nodes, which is easier to be programmed begin based on Node-RED visual programming.
o https://www.snap4city.org/download/video/course/p2/
o https://www.snap4city.org/download/video/course/p3/

• Client-Side Business Logic → logic on JavaScript on specific Dashboard Widgets only for
authorized Area Managers developers of Snap4City Platforms. We suggest first prototype by
using Server-Side Business Logic, then pass to Client-Side Business Logic in JavaScript. Client-
Side Business Logic is coded into the Widgets providing events via the Dashboard Builder in
Editing Mode. Client-Side Business Logic may exploit a large number of events provoked by
the user on the Dashboard Widgets. See development manual for CSBL:

o https://www.snap4city.org/download/video/ClientSideBusinessLogic-
WidgetManual.pdf

o Third party APIs, services, gateways, pages accessed by CSBL via some API to fill the
Dashboards/views.

o Third party databases accessed by CSBL via some API to fill the Dashboards/views.
o Both kinds of Business Logics may be active on the same Active Dashboard.

The Active Dashboards are used to implement Business Intelligence solutions with high interactivity and
the possibility of changing the data and the representation of data on the Dashboard/View dynamically
on the basis of the user actions. Examples are:

• the click on some button or widget on Dashboard to activate a computation on Client/Server side.
The computation on server side can include the activation of complex Data Analytics to be shown as
a result on the same or other dashboard as event drive actions.

• To select/collect some data and perform a query showing them on map and barseries, pie, multi-
trend, etc.

• To move a slider and see the light on dashboard changing.

• To click on a widget and activate / send control commands to other widgets and maps to drill down,
drill up, zoom, on data, maps, etc.

• To filter data from a certain time windows and see the changes also on other data representations.

• Select a time period on a time series and see all the other time trends aligned to the same period.

• Select a PIN on map and see a barseries proving last year average data regarding that element.

• To invoke Data Analytics via some API.

• To include HTML/CSS custom widget with CSBL

• Etc.

https://www.snap4city.org/download/video/course/p2/
https://www.snap4city.org/download/video/course/p2/
https://www.snap4city.org/download/video/course/p3/
https://www.snap4city.org/download/video/ClientSideBusinessLogic-WidgetManual.pdf
https://www.snap4city.org/download/video/ClientSideBusinessLogic-WidgetManual.pdf

17

A dashboard is substantially a view a tool to be used in both Operation and Plan, since it may

include:

• operational services such as: monitoring data values, trends, events, alarms, conditions, etc., but
also providing predictions, early warning, etc.

• Decision Support System tool, since it may provide evidence of normal and critical conditions,
and in some cases may offer solutions, if well designed and connected with Data Analytics tools.

• What-if analysis: a tool to understand what is going to happen if something has been or is going
to be changed (in traffic, road infrastructure for example), providing the evidence by prediction
and simulation of what would be the effect of changes on again on Traffic but also emissions, travel
time, congestion, etc. (can be used on Operation and Plan)

• Simulation is a class of tools to simulate the city conditions on the basis of changes: on traffic flow
in specific parts, in road graph setting (adding/changing a road parameter as lanes, direction,
position, velocity, etc.) (can be used in Operation and Plan)

• Optimization is a class of tools which are capable on the basis of an initial scenario and a set of
parameters to provide you one or more possible solutions to solve a problem. For example, reduce
congestion, reduce emissions and pollution, reduce the travel time, reduce the number of stops at
the traffic lights, etc.

• Scenarios is a class of tools to select an area of the map and define a context including: road
graph perimeter, eventual changes on the road graph, traffic in/out flux, included sensors of any
kinds, etc.

18

2. MLOps in ClearML

2.1 – Managing an Experiment
In this section, we describe how to get started tracking experiments with ClearML.

2.1.1 – Credentials
The credentials to use ClearML MLOps in Snap4City are provided by RootAdmin of the Snap4city platform
you are using.
In order for Jupyter notebooks or Python SDK to communicate with ClearML Server, you need to insert
the credentials that can be generated by connecting to the ClearML graphical interface from the
Snap4City interface and going to settings->workspace, these credentials are personal, in this way
ClearML can connect the experiment to the user.

2.1.2 – Initialization of an Experiment
In order to connect to JupyterLab of Snap4City

Create a new notebook, by entering the credentials generated previously for example:

%env CLEARML_WEB_HOST=http://192.168.1.XXX:8080
%env CLEARML_API_HOST=http://192.168.1.XXX:8008
%env CLEARML_FILES_HOST=http://192.168.1.XXX:8081
credenziali_di_x
%env CLEARML_API_ACCESS_KEY=xxxx
%env CLEARML_API_SECRET_KEY=xxxxx

2.1.3 – ClearML import
Install with pip all the packages needed for the experiment, even if the code will be executed by an agent
on a different server than those available for Execution, it is necessary to communicate to ClearML server
which packages must be used to run the experiment.

from clearml import Task

2.1.4 – Task Creation/Init
task = Task.init(project_name="nome_progetto", task_name="nome_task")

A dictionary with the parameters is created, so that they can also be managed later from a graphical
interface, for example:

params = {'epochs': 1} task.connect(params)

The experiment is performed remotely by an agent:

task.execute_remotely(queue_name="nome_coda")

At this point the local execution (in the JupyterLab) is stopped, and the experiment is queued to be
executed by one of the agents.
By connecting to the ClearML graphical interface on Snap4City it is possible to monitor the experiment.

19

2.2 - Python Version and Package compatibilities in ClearML Agents
Each Server CPU/GPU task to be executed from the queue creates a Docker container using the
preconfigured image in the agent as a base image (or another image if explicitly specified in the task).
The process includes reading the requirements of the Python packages and their specific versions from
the task, followed by installing and executing the task inside the container.

2.2.1 – Problems of compatibility among versions e packets Python
The communication of Python versions and required packages is done by the ClearML Server, based on
the local development environment from which the task was initiated. For example, if you are using
Python 3.10 and NumPy 1.26 in a JupyterLab environment and you initialize a task with Task.init(), the
ClearML Server will record these requirements, and the agent will then try to satisfy them. However, if
for example the Docker image used by the agent is based on Ubuntu 20.04, which supports Python 3.8
by default, a compatibility issue may arise. Python 3.8 does not satisfy the requirement for NumPy 1.26,
which requires Python >= 3.9, thus causing the task to fail due to version incompatibility.

A possible solution is to use the usual Python version both locally and in the Docker container.
Alternatively, if the task fails, you can use the ClearML GUI to clone the task and change the versions of
the required packages to be compatible with the container's Python version. You can also change the
base Docker image used by the agent from the cloned task GUI.

2.2.2 – Selection of Docker Image of the Agent for CPU Compatibility

20

In order for the agent to use the GPU correctly, it is essential to select a Docker image that guarantees
compatibility with the CUDA drivers of the GPU in use. For example, for a machine equipped with an
Nvidia 4090 GPU with CUDA driver version 12.3, an appropriate Docker image would be
nvidia/cuda:12.3.2-cudnn9-runtime-ubuntu22.04.
This image not only supports the required CUDA driver version, but is also based on Ubuntu 22.04,
which uses Python 3.10 by default.
https://hub.docker.com/r/nvidia/cuda/tags

2.3 - ClearML Basic Functionalities

2.3.1 - Log of the Hyper-parameters
Saving hyperparameters for each experiment allows to replay the experiment with different parameters
and compare parameters from multiple experiments.
You can save parameters as:

• dictionary (very useful when parsing an external configuration file and storing it as a dict object),

• configuration files,

• custom objects, or

• Hydra configurations.

2.3.2 - Log Artefacts
ClearML allows you to store the outputs of your experiments as artifacts, which can then be easily
accessed and used, either through the web interface or programmatically.
ClearML provides methods to easily track the files generated during the execution of your experiments,
such as:

● Numpy objects
● Pandas DataFrames
● PIL (Python Imaging Library)
● Files and folders
● Python objects
● Other

2.3.3 - Add Artefacts
Load a file

Load a folder

Load an instance of an object, corresponding formats for Numpy/Pandas/PIL Images such as
npz/csv.gz/jpg are supported. If the object type is unknown, ClearML serializes (pickles) it and loads
the pickle file.

task.upload_artifact(name='folder', artifact_object='/path/to/folder/')

params_dictionary = {'epochs': 3, 'lr': 0.4}

task.connect(params_dictionary)

task.upload_artifact(name='data',

artifact_object='/path/to/preprocess_data.csv')

numpy_object = np.eye(100, 100)

task.upload_artifact(name='features', artifact_object=numpy_object)

https://hub.docker.com/r/nvidia/cuda/tags

21

2.3.4 – Use the Artefacts
Registered artifacts can be used by other tasks. To use an artifact, you must first get an instance of the
task that originally created it, then you can download it and get its path, or get the artifact object
directly.

2.3.5 - Models
Models are a special type of artifact. Models created by popular frameworks (such as PyTorch,
TensorFlow, Scikit-learn) are automatically registered by ClearML. All snapshots are automatically
registered.

2.3.6 – Load of a model
Loading a trained model is similar to loading an artifact

2.3.7 - Log Metrics
By default, ClearML automatically captures and logs everything that is reported to TensorBoard and
Matplotlib. Since not all metrics are plotted this way, you can also manually report metrics using a
Logger object. You can log time series data and confusion matrices, HTML, audio and video, custom
plotly graphs, etc.

2.3.8 – Data types registered with Logger
● Text: Mostly captured automatically from stdout and stderr, but can be logged

manually.
● Scalars: Time series data. The X-axis is always a sequential number, usually iterations

but can be epochs or others.
● Graphs: General graphs and charts, such as histograms, confusion matrices, line plots,

and custom plotly graphs.

preprocess_task = Task.get_task(task_id='preprocessing_task_id')

local_csv = preprocess_task.artifacts['data'].get_local_copy()

prev_task = Task.get_task(task_id='the_training_task')

last_snapshot = prev_task.models['output'][-1]

local_weights_path = last_snapshot.get_local_copy()

22

● Debug Samples: Images, audio, and video. Can be flagged per iteration.

2.3.9 – Automatic Recording of metrics
ClearML automatically captures metrics reported to major libraries, such as TensorBoard and
Matplotlib, without the need for additional code.
In addition, ClearML captures and logs everything written to the console, from debug messages to
errors to library warning messages.
GPU, CPU, Memory, and Network information are also automatically captured.

2.3.10 - Manual Recording of Metrics
ClearML also supports manual reporting of different types of metrics and graphs, such as line charts,
histograms, and even Plotly graphs. The object used to report metrics is called a logger and is obtained
by calling Task.get_logger().

● Text
● Scalars
● Graphs

○ 2D Graphs
■ Histograms
■ Confusion Matrices
■ Scatter Plots

○ 3D Graphs
■ Surface Plots
■ Scatter Plots

○ Tables
■ Pandas DataFrames

23

■ CSV Files
○ Matplotlib Figures
○ Plotly Figures

● Debug Samples
○ Images
○ HTML
○ Media - Images, Audio, Video

2.3.11 - Pipelines
Pipelines are a way to connect multiple processes, using the output of one process as input to
another. ClearML Pipelines are implemented by a Task Controller that holds the logic of the
interactions between the pipeline steps. The execution logic controls which step to launch based on
the completion of the parent steps. Depending on the specifications defined in the task controller,
the parameters of a step can be overridden, allowing users to leverage the products of the execution
of other steps, such as artifacts and parameters. When executed, the controller will launch the
pipeline steps sequentially.

The pipeline execution page in the web interface shows the pipeline structure in terms of the steps
executed and their status, as well as configuration parameters and execution output.
ClearML pipelines are created from code using one of the following methods:

• PipelineController class: A python interface to define and configure the pipeline controller and
its steps. The controller and steps can be functions in your python code, or existing ClearML
tasks.

• PipelineDecorator class: A set of Python decorators that transform your functions into the
pipeline controller and steps.

When the pipeline is executed, tasks are created for the controller and steps.
Since a controller is itself a ClearML task, it can be used as a pipeline step. This allows you to create more
complex workflows, such as pipelines that execute other pipelines, or pipelines that execute multiple
tasks at the same time.

24

2.4 - ClearML Data
ClearML Data is a key component of ClearML that provides advanced versioning of datasets, simplifying
access and traceability of data used in machine learning experiments. This tool is essential for ensuring
the reproducibility of experiments and streamlining the workflow in machine learning, especially when
datasets are subject to continuous updates.
ClearML Data is based on two main goals (ClearML Data, 2024):

• Accessibility: Ensure that data is easily accessible from any machine connected to the system.

• Versioning: Link data to experiments, providing complete and precise traceability of the versions of
datasets used in the various tasks.

These features allow developers to track the evolution of datasets over time and easily access specific
versions for experiment reproduction and analysis.

2.4.1 - Dataset Versioning
One of the most powerful aspects of ClearML Data is its ability to version datasets. Each dataset can be
finalized once it is complete, preventing further changes, which ensures that each experiment uses
exactly the data intended without the risk of accidental changes. When a dataset needs to be updated,
ClearML can create a new version that inherits the contents of the previous dataset, maintaining a
lineage of the data.
This approach optimizes storage space, as ClearML only stores the differences between dataset versions
using differential storage. This is extremely useful in cases where a project requires multiple updates to
datasets without having to duplicate the entire data for each version.

2.4.2 - Dataset Organization and Access
ClearML Data allows you to organize datasets into projects and subprojects, making them easy to
manage and search. Datasets can be further enriched with tags, which makes it easy to retrieve the most
recent or relevant versions using commands like Dataset.get() within a specific project or tag. This makes
the workflow much more efficient, as datasets are automatically retrieved and managed, avoiding errors
due to versions or outdated files.
As with any task in ClearML, datasets can be organized into projects (and subprojects). Additionally, when
creating a dataset, you can apply tags to the dataset, which will make it easier to search.
Organizing your datasets into projects by use case makes it easier to access the latest version of the
dataset. If only one project is specified when using Dataset.get(), the method returns the latest dataset
in a project. The same goes for tags; if a tag is specified, the method will return the latest dataset labeled
with that tag.
In cases where you are using a dataset in a task (for example, consuming a dataset), you can easily track
which dataset the task is using by using the alias parameter of Dataset.get(). Pass
alias=<dataset_alias_string>, and the task using the dataset will store the dataset ID in the
dataset_alias_string parameter under the CONFIGURATION > HYPERPARAMETERS > Datasets section of
the task.

2.4.3 - Dataset Documentation and Tracking
ClearML Data not only manages the content of datasets, but also provides tools to document and track
additional details. Through the Logger object, users can attach metrics and debug samples directly to the
dataset, adding information such as summary tables and statistics generated during the pre-processing
or data ingestion process. This improves visibility into the dataset and makes it easier to understand the
content and transformations applied.
Attach informative metrics or debug samples from the dataset directly to the Dataset. Use
Dataset.get_logger() to access the dataset's logger object, then add any additional information to the
dataset, using the methods available with a Logger object. You can add dataset summaries (such as
tables) to create a preview of the stored data for better visibility, or attach any statistics generated by
the data ingestion process.

25

2.4.4 - Using ClearML Data
ClearML Data offers two main interfaces for managing datasets:

• CLI (Command Line Interface): The clearml-data tool lets you create, load, add, remove, and
manage datasets directly from the command line. It is especially useful for automating the process
of versioning and managing data in continuous development contexts.

• Python SDK: The clearml.Dataset interface lets you manage datasets programmatically within
Python scripts. Developers can create datasets, access specific versions, add or remove files, and
get local copies of the data. The ability to integrate dataset management into pre- or post-
processing workflows greatly improves the efficiency of the development cycle.

ClearML Data lets you efficiently synchronize changes to datasets, reflecting local updates on the server
without the need to manually manage files. Using commands such as sync_folder(), developers can
automatically update a dataset based on changes made to a specific local folder. This is especially useful
when there is a single “point of truth” for the data, which is periodically updated, and you want these
changes to be reflected in ClearML.

Datasets can be retrieved and used easily through the CLI or Python SDK. ClearML supports two
access modes:

• Read-only copy: Ideal for maintaining an immutable version of the dataset.

• Writable copy: Provides a local, editable copy of the dataset, useful for testing or temporary
data manipulation.

Additionally, ClearML allows you to add or remove files from an existing dataset, while still
maintaining traceability of the changes. Once the changes are complete, you can upload them back
to the server and finalize the dataset to make it available for future tasks.

ClearML provides an intuitive graphical interface that allows you to navigate through datasets and
view the lineage of versions as shown in Figure 2-6, Figure 2-7, Figure 2-8, and Figure 2-9. Users
can filter datasets by tag or creator, and each dataset version displays details about its content,
including thumbnails, tables, and associated files. This feature simplifies data management and
improves transparency and access to key information.

2.4.5 - ClearML Data CLI

create
Create a new dataset.

add
add files and folders to dataset.

clearml-data create [-h] [--parents [PARENTS [PARENTS ...]]] [--project

PROJECT] --name NAME [--version VERSION] [--output-uri OUTPUT_URI]

[--tags [TAGS [TAGS ...]]]

clearml-data add [-h] [--id ID] [--dataset-folder DATASET_FOLDER]

[--files [FILES [FILES ...]]] [--wildcard [WILDCARD [WILDCARD ...]]]

[--links [LINKS [LINKS ...]]] [--non-recursive] [--verbose]

26

remove
remove files from a dataset

upload
Load changes in the dataset on server.

close
Finalize the dataset and make it ready for use. This automatically uploads all files that were not
previously uploaded. Once a dataset is finalized, it cannot be modified.

sync
Synchronize the contents of a folder with ClearML. This is useful if a user has a single point of truth
(i.e. a folder) that is updated from time to time. When an update needs to be reflected in the ClearML
system, call clearml-data sync and pass the path to the folder, and the changes (either adding,
modifying, or removing files) will be reflected in ClearML. This command also loads the data and
automatically finalizes the dataset.

get
Get a local copy of a dataset. By default, you get a read-only cached folder, but you can get a
modifiable copy using the --copy flag.

CHUNK_SIZE] [--verbose]

clearml-data remove [-h] [--id ID] [--files [FILES [FILES ...]]]

[--non-recursive] [--verbose]

clearml-data upload [-h] [--id ID] [--storage STORAGE] [--chunk-size

clearml-data close [-h] [--id ID] [--storage STORAGE] [--disable-upload]

[--chunk-size CHUNK_SIZE] [--verbose]

clearml-data sync [-h] [--id ID] [--dataset-folder DATASET_FOLDER]

--folder FOLDER [--parents [PARENTS [PARENTS ...]]] [--project PROJECT]

[--name NAME][--version VERSION] [--output-uri OUTPUT_URI] [--tags [TAGS

[TAGS ...]]][--storage STORAGE] [--skip-close] [--chunk-size CHUNK_SIZE]

[--verbose]

clearml-data get [-h] [--id ID] [--copy COPY] [--link LINK] [--part

PART] [--num-parts NUM_PARTS] [--overwrite] [--verbose]

27

2.4.6 - ClearML Data SDK
Per cominciare Importa in Python la classe Dataset.

Create Dataset
ClearML Data supports multiple ways to programmatically create datasets:

• Dataset.create(): Creates a new dataset. Parent datasets can be specified, from which the new
dataset will inherit its data.

• Dataset.squash(): Generates a new dataset by merging a set of related datasets together.
You can add metadata to your datasets using Dataset.set_metadata(), and access the metadata using
Dataset.get_metadata().

Dataset.create()
Use the Dataset.create method to create a dataset. Creating datasets programmatically is especially
useful when preprocessing data, so that the preprocessing code and the resulting dataset are stored in
a single task (see the use_current_task parameter in Dataset.create).

Access to Datasets
Once a dataset has been created and uploaded to a server, the dataset can be accessed
programmatically from anywhere.

Dataset.create()
Use the Dataset.get class method to access a specific Dataset object, providing any of the following
dataset attributes: dataset ID, project, name, tags, and/or version. If multiple datasets match the
query, the most recent one is returned.

Once you have a specific dataset object, you can get a local copy of the dataset using one of the following
options:

from clearml import Dataset

dataset = Dataset.get(

dataset_id=None,

dataset_project="Example Project",

dataset_name="Example Dataset",

dataset_tags="my tag",

dataset_version="1.2",

only_completed=True,

only_published=False,

)

Preprocessing code here

dataset = Dataset.create(

dataset_name='dataset name',

dataset_project='dataset project',

parent_datasets=[PARENT_DS_ID_1, PARENT_DS_ID_2],

dataset_version="1.0",

output_uri="gs://bucket-name/folder",

description='my dataset description')

28

• Dataset.get_local_copy(): Get a local, read-only copy of an entire dataset. This method returns a
path to the dataset in the local cache (downloading the dataset if it is not already cached).

• Dataset.get_mutable_local_copy(): Get a local, writable copy of an entire dataset. This method
downloads the dataset to a specific (uncached) folder, specified with the target_folder parameter.
If the specified folder already has content, specify whether to overwrite its contents with the
dataset's contents, using the overwrite parameter.

Modify a Dataset
Once you have created a dataset, you can modify and replace its contents. As your data changes, you
can add updated files or remove unnecessary files.

add_files()
To add local files or folders to the current dataset, use the Dataset.add_files method. If a file is already
in a dataset, but has changed, it can be added again and ClearML will load the file diff.

remove_files()
To remove files from a current dataset, use Dataset.remove_files(). Enter the path to the folder or file to
remove in the dataset_path parameter. The path is relative to the dataset.
You can enter a wildcard in dataset_path to remove a set of files that match the wildcard. Set the
recursive parameter to True to match all files in the wildcard recursively.

Preview of Datasets
Add informative metrics, graphs, or averages to the Dataset. Use Dataset.get_logger() to access the
dataset's logger object, then add any additional information to the dataset, using the methods available
with a Logger object. You can add dataset summaries (such as tables) to preview the stored data, or
attach any statistics generated by the data ingestion process.

Upload Files
To upload dataset files to storage, use the Dataset.upload method. The dataset files must be uploaded

Attach a table to the dataset

dataset.get_logger().report_table(

title="Raw Dataset Metadata", series="Raw Dataset Metadata",

csv="path/to/csv"

)

Attach a historgram to the table

dataset.get_logger().report_histogram(

title="Class

distribution",

series="Class

distribution",

values=histogram_data,

iteration=0,

xlabels=histogram_data.index.tolist(),

yaxis="Number of samples",)

dataset.remove_files(dataset_path="*.csv", recursive=True)

29

before the dataset is finalized.

Finalize a Dataset
Use Dataset.finalize() to close the current dataset. This marks the dataset activity as Completed, after
which the dataset can no longer be modified.
Before finalizing a dataset, its files must first be uploaded.

Synchronize Local Storage
Use Dataset.sync_folder() to update a dataset based on changes to the contents of a specific folder.
Specify the folder to synchronize with the local_path parameter (the method takes all files within the
folder and recursively).
This method is useful in the case where there is a single point of truth, be it a local or network folder,
that is updated periodically. Changes to the folder will be reflected in a new version of the dataset. This
method saves time since you don't have to manually update (add/remove) files in a dataset.

2.4.7 - Graphic User Interface
Use the Datasets page to navigate and manage datasets. The page displays all datasets created using
ClearML Data.
You can view the datasets page in Project view or List view.
Click on a dataset tab to navigate to its Version List, where you can view the lineage and contents of
the dataset’s versions.
Filter datasets to more easily find what you’re looking for. These filters can be applied by clicking
Filter:

• My Work - Show only datasets you’ve created

• Tags - Choose which tags to filter from a list of tags used in the datasets.

30

The dataset page lists the versions of the dataset. Selecting a version causes the panel to display its
lineage graphically.

Version Detail Panel
Click DETAILS in the upper left corner of the information panel to display the version details panel.
The panel includes the tabs:

CONTENT - A table that summarizes the contents of the version, including file names, file sizes, and
hashes.

PREVIEW - A preview of the contents of the dataset version.

31

3. ClearML - Experiment Comparison
ClearML provides advanced tools for comparing machine learning experiments, giving researchers and
developers a flexible and customizable platform to analyze results, compare hyperparameters, and
optimize model performance. This functionality is essential for improving development cycle efficiency
and monitoring model performance across various configurations.

3.1 - Experiment Table
The Experiment Table is a customizable list of experiments associated with a project. From the
Experiment Table, you can view experiment details and work with them (reset, clone, queue, create
leaderboards to monitor experimentation, and more). The auto-updating Experiment Table allows users
to continuously monitor the progress of experiments.

The Experiment Table in ClearML can be customized in several ways:

• Column order and size: You can change the order of columns by dragging them and adjust their
width.

• Editing columns: You can show or hide columns and add custom columns for metrics and
hyperparameters.

• Filter and sort columns: Filter and sort columns based on various criteria, such as experiment type,
metrics, hyperparameters, and more.

These customizations are useful for creating real-time leaderboards, sorting models by specific metrics,
and tracking hyperparameters. Changes made are persistent and can be saved and shared via URL,
making it easy for ClearML users to collaborate.

3.2 - Experiments Leaderboard
To create a custom leaderboard of experiments in ClearML:Add experiment configurations: Include
hyperparameters.

• Edit and add properties to experiments: Update or insert new properties.

• Insert reported metrics: Choose between the last reported value, minimum, or maximum of each
time series metric.

32

• Filter by user or experiment type: Use specific filters to select experiments.

• Use and filter by specific tags: Set and apply filters based on tags.

Sort the table by performance metrics or other criteria, and also filter experiments by name. The custom
dashboard can be shared via URL and bookmarked for future use.

3.3 - Select Multiple Experiments
Select multiple experiments using the checkboxes to the left of the experiments.
In the ClearML comparison view, you can compare the scalar results and plots of the selected
experiments. If no specific experiments are selected, the view will automatically display all experiments
visible in the table. In the drop-down menu, you can choose to display:

• Scalars: Line plots that represent the scalar results of the experiments as a time series.

• Graphs: The last sample reported for each metric/variant combination for each experiment being
compared.

Line, scatter, and bar plots are compared by overlaying the metrics/variants of all experiments into a
single comparison plot. This allows for a direct visual comparison between experiments.

Other graph types are displayed separately for each experiment.

33

In the ClearML comparison view, single-valued scalars from different experiments are displayed in a bar
chart. Each group of bars in the chart represents a reported metric, with each bar within the group
representing a specific experiment. This format makes it easy to directly compare the performance of
experiments on different metrics.

3.4 - Detailed Comparison
Once multiple experiments are selected, you can click COMPARE to access a detailed page where you
can compare the experiments.

3.4.1 - Comparison Modes

Side-by-Side Textual Comparison
ClearML also offers a side-by-side textual comparison mode, which allows you to compare the details

34

and hyperparameters of experiments in detail:

• In the Details tab, you can compare aspects such as source code and Python packages used, as
shown in Figure 2.15.

• In the Hyperparameters tab, users can compare nominal values of experiment configuration
parameters, with the option to highlight differences between selected experiments.

• In the Scalars tab, you can compare values of different metrics, highlighting maximums and
minimums, as shown in Figure 2.16.

Side-by-side comparison makes it easy to analyze differences between experiments, making it easier to
optimize and debug models.
Experiments are arranged in vertical tabs for side-by-side comparison, with the experiment on the left
serving as the base for comparison. You can change the base experiment and the differences between
experiments are highlighted. You can navigate through the differences and search for specific fields or
values, with the option to hide identical fields to focus on the differences.

Scalars Table Comparison
In the "Scalars" tab, the metric values of the experiments are organized in a table with
metrics/variants per row and experiments per column.
You can choose to display the last values, minimum or maximum values reported during the

35

execution of the experiments via a drop-down menu.
You can download this table as a CSV file.
Additionally, there is an option to highlight the maximum and minimum values of each variant
in the table.

Parallel Coordinates Mode
The "Parallel Coordinates" mode in the "Hyperparameters" tab allows you to visualize the impact of
hyperparameters on a specific metric. To do this:

1. Select a metric to compare under "Performance Metric".
2. Choose the metric values to use in the graph: "LAST" for the last value or the most recent value in

the running experiments, "MIN" for the minimum value, "MAX" for the maximum value.
3. Select the hyperparameters to compare under "Parameters".

Comparing Plots
In the "Scalars" and "Plot" tabs, you can compare the plots of your experiments.
The "Scalars" tab displays scalar values as time-series line graphs, while the "Plot" tab compares
the last reported sample of each metric/variant combination for each experiment.
Line, scatter, and bar plots are compared by overlaying each metric/variant from all experiments
in a single comparison plot.
You can use the "Group by" option to choose how to group the plots: by "Metric" (all variants
of a metric in the same plot) or by "Metric+Variant" (each variant in its own plot, the default).

XPERIMENTS + Graph

Groupby

Horizontal Axis Iterations

36

Smoothing e

Exponential Moving Ave...•

Find scalars Q

v accuracy "accuracyperclass

frog

plane

ship

"trainingloss

training loss

EXPERIMENTS +

Findplols Q

accuracyperclass/bird

-iPllclassilicahoo5 -iPlldassrricatioo3 -iP!ldassiflcatiao4 -iP!ldassification1
-iPlldassilicahon2

accuracyperclass/cat

-iPllclassilicahoo5-jPlldassrricatiao3-iP!ldassiflcatiao4-iP!ldassification1
-iPlldassilicahon2

accuracyperclass/car

-jpgclassilicahon5 -iMdassrrication3 -jpgdassiflcation4 -i1>11dassfficatjon1
-jpgclassilicahon2

accuracyperclass/deer

-jpgclassilicahon5 -iMdassrrication3 -jpgdassiflcation4 -i1>11dassfficatjon1
-jpgclassilicahon2

dense-bias_O

dense-bias_O
dense-kemeLO
dense_l-bias_O
dense_l-kemeLO
dense_l_bias_O-histogram
dense_l_kemeLO-histogram
dense_2-bias_O
dense_2-kemeLO
dense_2._bias_O-histogram
dense_2._kemeLO-histogram
dense_bias_O-histogram
dense_kerneLO-histogram

EXPERIMENTS + Graph

Groupby

Horizontal Axis Iterations

Smoothing e

Exponential Moving Ave...•

Q

Summary

jpgclassification1 (iteration□) jpgclassification2(iterationO)

jpgclassification3(iteration0)

Summary

■ exp1 ■ exp2 ■ ""l)l

37

Side-by-side Debug Sample Comparison
Allows you to compare debug samples at different iterations to see how experiments perform as they
run.
You can view debug samples by metric in the iterations shown, filtering the samples by selecting a
metric from the drop-down menu. The most recent iteration appears first.
By clicking "Sync selection", you can synchronize the iteration and metric selection between
experiments, so that selecting a metric from one experiment will automatically select the same metric
for the other experiments in the comparison.

38

4. Hyperparameter Optimization
ClearML provides built-in tools for hyperparameter tuning, allowing developers to improve the
performance of machine learning models through automated search techniques for the best
configurations. Hyperparameter tuning is a fundamental step in the machine learning development
cycle, as it allows you to systematically explore the parameter space, improving the model performance
based on predefined metrics.

The diagram shows the typical flow of hyperparameter optimization, where parameters from a base
Task are optimized:

1. Configure an Optimization Task with a base Task whose parameters will be optimized, and a set of

parameter values to test.
2. Clone the base Task. Each clone's parameters are overwritten with a value from the Optimization

Task.
3. Queue each clone for execution by a ClearML Agent.
4. The Optimization Task records and monitors the configuration and execution details of the cloned

Tasks, and returns a summary of the optimization results in tabular and parallel coordinate formats,
and in a scalar graph.

Capitolo 5 – Sviluppo e implementazione

39

Capitolo 5 – Sviluppo e implementazione

40

4.1 - Supported Optimizers
ClearML's HyperParameterOptimizer class includes modules for hyperparameter optimization. Its
modular design allows the use of multiple optimizers, including existing frameworks, for simple,
accurate, and fast hyperparameter optimization. Available optimizers include:

• Optuna: is the default optimizer in ClearML, using various samplers such as grid search,
random, Bayesian, and evolutionary algorithms.

• BOHB : Combines the speed of Hyperband searches with the orientation and convergence
guarantees of Bayesian optimization.

• Uniform random sampling of hyperparameters (RandomSearch in automation).

• Full grid sampling strategy of any combination of hyperparameters (GridSearch in automation).

• Custom : Use a custom class by inheriting from the ClearML automation base strategy class.

Supported Optimization Techniques
• Grid Search: Systematically explores all possible user-defined combinations of hyperparameters.

Although it is an exhaustive method, Grid Search becomes computationally expensive when the
hyperparameter space is very large.

• Random Search: This approach randomly extracts combinations of hyperparameters within a
defined range. Although less exhaustive than Grid Search, Random Search is more efficient when
the hyperparameter space is large, as it explores configurations in a less structured way but is
more likely to find good results with fewer experiments.

• Bayesian Optimization (Optuna): This technique is based on probabilistic models that predict the
impact of hyperparameters on model performance, guiding exploration towards the most
promising configurations. This approach dramatically reduces the number of experiments
needed to find the optimal parameters compared to Grid or Random Search.

• BOHB: This technique combines Bayesian optimization with a resource selection approach based
on HyperBand. This means that BOHB not only finds good hyperparameter configurations, but
also optimizes the use of computational resources, making it particularly suitable for resource-
constrained environments.

ClearML Integration
ClearML simplifies the use of optimizers within workflows by allowing users to define the parameters
to optimize directly in the GUI or via the Python SDK. Once the objective function and the
hyperparameter range are defined, ClearML automatically creates the necessary tasks and starts the
optimization.

4.1.1 - Comparison task
The basic idea is to use a dedicated task that retrieves the hyperparameters and metrics of
experiments already done to compare them programmatically.
This method would allow us to produce any table and graph (as long as it is possible to do so with
Python).
By exploiting the cloning and reproducibility of experiments features provided by ClearML, if
adequately parameterized, it would be possible to run the comparison task multiple times without
having to intervene on the code.

Accessing Tasks
A task can be identified by its project and name, as well as a unique identifier (UUID string). A task's name
and project can be changed after an experiment is run, but its ID remains the same.

Capitolo 5 – Sviluppo e implementazione

41

Programmatically, task objects can be retrieved by querying the system based on the task ID or a
combination of project and name, using the Task.get_task class method. If a combination of
project/name is used and there are multiple tasks with the same name, the function will return the last
modified task.

Examples:
● Using ID:

● Using name and project:

Once you have a task object in ClearML, you can query the task's state, reported scalar values, etc. You
can also retrieve the task's outputs, such as artifacts and models. This provides an efficient way to analyze
and manage the data and results generated by each task.

Search and filter tasks programmatically
Enter the search parameters into the Task.get_tasks method, which returns a list of task objects that
match the search.

You can filter tasks by passing rules to task_filter

Using Artifacts
A task's artifacts are accessible via the task's artifact property, which lists the artifact locations.
Artifacts can then be retrieved from their locations using:

a_task = Task.get_task(task_id='123456deadbeef')

a_task = Task.get_task(project_name='examples', task_name='artifacts')

task_list = Task.get_tasks(

task_ids=None, # type Optional[Sequence[str]]

project_name=None, # Optional[str]

task_name=None, # Optional[str]

allow_archived=True, # [bool]

task_filter=None, # Optional[Dict]#

tasks with tag `included_tag` or without tag `excluded_tag`

tags=['included_tag', '-excluded_tag']

)

task_filter={

filter out archived tasks

'system_tags': ['-archived'],

only completed & published tasks

'status': ['completed', 'published'],

only training type tasks

'type': ['training'],

match text in task comment or task name

'search_text': 'reg_exp_text',

order return task lists by their update time in ascending order

'order_by': ['last_update']

}

Capitolo 5 – Sviluppo e implementazione

42

• get_local_copy(): Downloads the artifact and caches it for later use, returning the path
to the cached copy.

• get(): Returns a Python object constructed from the downloaded artifact file.

Accessing Parameters
To access all parameters of a task, use the Task.get_parameters method. This method returns a
flattened dictionary of 'section/parameter': 'value' pairs.

To access a specific parameter in ClearML, use the Task.get_parameter method
specifying the parameter name and section.

Retrieving Scalar Values
Scalar Summary
Use the Task.get_last_scalar_metrics() method to get a summary of all scalars logged in the task.
This call returns a nested dictionary of the last values, as well as the maximum and minimum
values reported for each scalar metric logged in the task, sorted by title and series. This provides
a detailed and up-to-date overview of the task's performance in terms of different scalar
metrics.
Get Sample Values
To get a sample of the scalar values logged in a task, use the get_reported_scalars() method.
This method allows you to retrieve a sample of the scalars logged for each metric/series.
You can specify the maximum number of samples per series to return (up to 5000) using the
max_samples argument.
To retrieve all scalar values, use Task.get_all_reported_scalars() instead. Additionally, you can
set the x-axis units with the x_axis argument, choosing between iteration (default), timestamp
(milliseconds since epoch), or iso_time (real time).
Get single-valued scalars
To get the values of single-valued scalars logged in a task, use the
Task.get_reported_single_value() method, specifying the scalar name.
If you want to get all logged single-valued scalars, use Task.get_reported_single_values(), which
returns a dictionary of scalar name and value pairs. This method is useful for analyzing specific
scalar results within a task.

5. ClearML Feature Testing

get instance of task that created artifact, using task ID

preprocess_task = Task.get_task(task_id='the_preprocessing_task_id')

access artifact

local_csv = preprocess_task.artifacts['data'].get_local_copy()

task = Task.get_task(project_name='examples', task_name='parameters')

will print a flattened dictionary of the 'section/parameter': 'value'

pairs

print(task.get_parameters())

param = task.get_parameter(name="Args/batch_size")

Capitolo 5 – Sviluppo e implementazione

43

After selecting ClearML as the primary MLOps tool for Snap4City, we ran a series of practical tests to
evaluate its effectiveness in dataset versioning and experiment comparison capabilities, two critical
aspects to ensure reproducibility and detailed analysis of machine learning models.

5.1 - Dataset Versioning
ClearML offers advanced dataset versioning capabilities, allowing you to manage and track different
versions of the datasets used for experiments. During the tests, we used an image classification dataset
to train a computer vision model, leveraging ClearML Data’s capabilities to version the datasets and
ensure their accessibility from any machine.
One of the main advantages of this system is that each experiment can draw on a specific version of the
dataset, ensuring full reproducibility. If the dataset is modified, ClearML Data only records the
differences from the previous version, thus optimizing storage space and maintaining full traceability of
the changes made to the dataset. Figure 2 22 and Figure 2 23 show the dataset management interface
for this specific test.
We found that once a dataset is finalized in ClearML, it becomes immutable, providing an additional level
of data security and integrity. This allows future experiments to use the exact data from previous
versions, improving collaboration and reuse of work, as well as ensuring that results are always
repeatable and verifiable.
This advanced dataset management capability has proven particularly useful for complex computer
vision experiments, where ensuring that models and data are tightly aligned and accurately versioned is
essential.

Figure 2 22 Dataset Management Test – Versioning Interface

Figure 2 23 Image Dataset Management Test – Dataset Preview Interface

5.2 - Comparing Experiments
Comparing experiments is one of the core capabilities of ClearML, allowing for in-depth and intuitive
analysis of model results and parameters. During testing, we used ClearML’s Experiments Table to
compare hyperparameters, metrics, and performance across different model iterations in real time. This
was especially useful for tracking differences between experiments and assessing the impact of changes
on machine learning algorithms.

Capitolo 5 – Sviluppo e implementazione

44

ClearML allows you to visualize experiments in a leaderboard view, with the ability to customize columns,
filter results, and sort models by specific criteria such as accuracy, loss, or execution time.
Another key feature we tested was the ability to clone experiments: once you’ve identified an
experiment that performs well, you can clone it, change its parameters or dataset, and rerun it. This
allowed you to quickly iterate on model configurations while providing full traceability of previous
versions and new experiments derived from them.
ClearML also supports scalar plots and parallel coordinates, which were useful tools for interactively
visualizing the impact of hyperparameters on results. These plots allow us to overlay the results of
multiple experiments and visually analyze how small changes in hyperparameters affect the final
performance. The ability to visually compare experiments accelerated the model tuning process, helping
us quickly identify the best configurations.
During these tests, the idea of using a comparison task also emerged. Through this dedicated task, the
comparison of multiple experiments could be automated, collecting and aggregating key metrics and
visualizing the results in a standardized format. Implementing a comparison task would allow for periodic
evaluations of the most recent experiments, making it easier to review and choose the best
configurations based on specific criteria. This task could be integrated into existing workflows, further
streamlining the model comparison and selection process.

Capitolo 5 – Sviluppo e implementazione

45

6. Inference API
The two main APIs developed for ClearML Serving were specifically designed to meet the needs of
Snap4City, providing flexible solutions for queuing tasks and inference requests.

6.1 On-Demand API
The On-Demand Service is designed to respond to inference requests in real time, exploiting a DAP ready
to respond loaded in memory on some server. The requested model is pre-loaded in memory (usually in
the GPU) and ready to perform inference without the need to wait for resources to load.

Flow of the On-Demand API:

1. The API receives an http request with the hash of the task handling the inference on a specific
machine (to locate a specific machine), the name of the endpoint to be called, the input of the
endpoint and the access_token of Snap4City.

2. Validation of the access token via Snap4City is performed to ensure that only authorised users
can make a request.

3. Using the hash provided, the IP address of the specific machine is traced back to the ClearML
Utils database.

4. A request is made to the IP obtained with the name of the endpoint provided.
5. The result of the request is returned to the user.

In this fragment, a POST request is made to the pre-loaded model endpoint, and the result is returned in
real time:

machine_id = body.get("machine_id", "")
if not machine_id:
 self.log_result("", "", False, {"error": "Machine id is missing"})
 return 'Error: Machine id is missing'
Extract the endpoint from the body
hashed_endpoint = body.get("endpoint", "")
if not hashed_endpoint:
 self.log_result("", "", False, {"error": "Endpoint is missing"})
 return 'Error: Endpoint is missing'
log_details = {"params": body.get("params", {})}
status = False
endpoint_task_id = ""
try:
 endpoint_task_id = self.decode_endpoint(machine_id, hashed_endpoint)
 base_url = self.retrieve_base_url_mapping(endpoint_task_id)
except ValueError as e:
 log_details["error"] = str(e)
 self.log_result("", hashed_endpoint, status, log_details)
 return f "Error: Invalid Endpoint ID or Endpoint Task ID: {hashed_endpoint}"
if not base_url:
 log_details["error"] = "No base_url mapping found".
 self.log_result(endpoint_task_id, hashed_endpoint, status, log_details)
 return f "Error: No base_url mapping found for Endpoint Task ID: {endpoint_task_id}"
url = f"{base_url}/{hashed_endpoint}"
Make a POST request to the decoded URL with the params from the body
try:
 response = requests.post(url, json=body.get("params", {}))
 response.raise_for_status() # Raise an exception for HTTP errors
 response_data = response.json()
 log_details.update(response_data)

Capitolo 5 – Sviluppo e implementazione

46

 status = True
except requests.RequestException as e:
 log_details["error"] = str(e)
 self.log_result(endpoint_task_id, hashed_endpoint, status, log_details)
 return f "Error: Failed to make POST request to {url}. Error: {str(e)}"

6.2 API Task Enqueue
The Enqueue Task Service allows users to send a task to the execution queue, delegating execution to
ClearML agents. The API receives the task's hash ID, the queue name and any input for the task. Once
the request is received, the task is cloned, configured with any parameters and placed in the selected
queue, ready to be executed by the ClearML agent as container deployed on the fly.

API flow:

1. The API receives a request containing: the hash ID of the task, the queue name, the input for the
task and the Snap4City access_token.

2. Access token validation via Snap4City is performed to ensure that only authorised users can
submit tasks.

3. The hash is translated with the real id of the task in the ClearML Utils database.
4. The task is cloned and queued.
5. The API returns a response with the status of the operation.

Code fragment showing how the API clones the original task, connects it to the given parameters and
places it in the specified queue:

hashed_task_id = body.get("task_id", "")
 if not hashed_task_id:
 return 'Error: Task ID is missing'.
 try:
 task_id, default_queue = self.decode_task_id(hashed_task_id)
 task = Task.get_task(task_id=task_id)
 except ValueError as e:
 return f "Error: Invalid Task ID: {hashed_task_id}"
 timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
 cloned_task = Task.clone(source_task=task, name=f"{task.name}_{timestamp}")
 cloned_task.connect(body.get("params", {}))
 cloned_task.set_base_docker(None)
 queue = body.get("queue") if body.get("queue") else default_queue
 enqueue_response = Task.enqueue(task=cloned_task, queue_name=queue)

6.3 ClearML Utils
The webapp, available at http://192.168.1.xxx:9000, is designed for internal use. This application allows
administrators and developers to easily manage ClearML resources configured for serving and task
enqueue, as well as providing an interface to monitor service calls and view detailed logs.

6.3.1 - Technology Used: Stack TALL and Filament
The TALL stack combines modern technologies that simplify the development of dynamic and interactive
web applications:

• Tailwind CSS: A highly customisable CSS framework that facilitates the creation of responsive,
modern user interfaces with a utility-first approach. It allows you to quickly create elegant
layouts without writing complex CSS.

http://192.168.1.xxx:9000/

Capitolo 5 – Sviluppo e implementazione

47

• Alpine.js: A lightweight JavaScript framework that provides responsive functionality without the
need for a heavy front-end framework such as Vue.js or React. It is perfect for handling dynamic
client-side interactions with a simple and readable syntax.

• Laravel: The popular PHP framework for backend development, known for its simplicity,
elegance and wide range of built-in functionality. Thanks to its MVC (Model-View-Controller)
architecture, Laravel facilitates the structured and modular development of web applications
(Laravel Docs, 2024).

• Livewire: A key component of the stack, allowing you to create responsive user interfaces
without having to write complex JavaScript. Livewire allows interfaces to be updated in real time
by communicating with the Laravel backend, greatly simplifying server-side logic management
and application interactivity.

In addition to these tools, the webapp uses Filament, a Laravel extension designed to build
administrative panels and CRUD (Create, Read, Update, Delete) applications quickly and scalably.

6.3.2 - Advantages of Filament
Filament is a toolkit that integrates seamlessly with Laravel and offers a number of significant advantages
for the development of in-house management applications, such as the one developed for ClearML
resource management:

• Speed of development: The package includes code generators and predefined components that
accelerate the development process. In just a few steps, ClearML API and resource management
interfaces could be created.

• Extendability and maintenance: Filament integrates seamlessly with Laravel and Livewire,
ensuring that any new functionality can be added in a modular manner without breaking the
existing architecture. This keeps the code clean and easy to extend in the future.

6.4 Main ClearML Dashboard
The dashboard provides an overview of available resources and the use of ClearML services. The main
features of the dashboard include:

• Number of configured serving machines: Displays the total number of machines configured for
on-demand serving.

• Number of endpoints for on-demand service: Shows the number of endpoints configured and
ready for immediate inference.

• Number of tasks available for the enqueue task: Lists the tasks configured for use by end users
via the task enqueue API.

• Graph of requests to the task enqueue service: Displays a graph tracking the number and trend
of requests made to the task enqueue service.

• Graph of requests to the on-demand service: Shows the trend of requests made to the on-
demand inference service.

6.5 ClearML Serving Machine Management
An interface (Figure 6-1, Figure 6-2) allows administrators to manage the machines configured for
serving. On this page, administrators can:

• Enter the IP address of the machine on which ClearML Serving is configured.

• Enter the serving task ID: This information is used to map the IP of the machine to the serving
task, allowing the application to correctly call the served models.

This feature simplifies resource management, allowing new machines to be easily registered and
associated with configured serving tasks.

Capitolo 5 – Sviluppo e implementazione

48

Figure 6-1 ClearML Utils - list of machines configured for serving.

Figure 6-2 ClearML Utils - Screen shot of adding a serving machine.

6.6 On-Demand Endpoint Management
Another key functionality of the webapp is endpoint management for the on-demand service (Figure 6-3,
Figure 6-4, Figure 6-5). Developers, once an endpoint has been generated via ClearML Serving, can:

• Enter the name of the endpoint and the ID of the associated serving task.

• The system generates a hash of the serving task, which will be used by end users to interact with
the endpoint without the need to know the actual task ID.

This solution improves security and ease of use, allowing the end user to use the endpoint via a hash
without having to know the technical details of the task.

Capitolo 5 – Sviluppo e implementazione

49

Figure 6-3 ClearML Utils - List of endpoints

Figure 6-4 ClearML Utils - Adding new endpoint

Figure 6-5 ClearML Utils - Display hash endpoints

6.7 Task Management for the Task Enqueue Service
The webapp also offers an interface (Figure 6-6, Figure 6-7, Figure 6-8) to manage the tasks available for
the task enqueue service. Developers, in order to offer the possibility of cloning and queuing a task, must:

• Access the interface and enter the task ID and default queue name.

• The application generates a hash of the task ID, which the end user will use to call the task
enqueue service.

This system allows end users to start cloned tasks using only the hash, without having to access the
original task and know the full technical details.

Capitolo 5 – Sviluppo e implementazione

50

Figure 6-6 ClearML Utils - List of tasks configured for use via API Task Enqueue

Figure 6-7 ClearML Utils - Screen shot for adding a new task

Figure 6-8 ClearML Utils - Screen to display the details of the configured task and retrieve the hash created by

the application

6.8 Service Call Logs
The webapp provides two sections dedicated to displaying service call logs, allowing administrators and
developers to monitor traffic and the status of requests:

• Log of calls to the on-demand service (Figure 6-9Figure 6-10): In this section, you can view all
requests made to the on-demand service, including information such as:

o Success or failure of the request.
o Date and time of the request.
o Serving machine and endpoint called.
o Response received from the service.

• Log of calls to the task enqueue service (Figure 6-11Figure 6-12): Shows all requests made to
the task enqueue service, including information such as:

Capitolo 5 – Sviluppo e implementazione

51

o ID of the cloned task.
o Success or failure of the request.
o Details of the response received by the system.

These sections allow greater transparency and control over the use of services, facilitating debugging
and optimisation of operations.

Figure 6-9 ClearML Utils - List of Ondemand service call logs.

Figure 6-10 ClearML Utils - Detail of an Ondemand service log.

Figure 6-11 ClearML Utils - List of call logs to the Task Enqueue service.

Capitolo 5 – Sviluppo e implementazione

52

Figure 6-12 ClearML Utils - Detail of a Task Enqueue service log.

Capitolo 5 – Sviluppo e implementazione

53

7. Use of Services AI/DA from IoT App/Proc.Logic
These blocks require users to obtain an access-token from Snap4City, which is then validated by the
ClearML API. This solution ensured that only authorised users can access and interact with the services,
while maintaining a high level of security within the Snap4City platform.
The adoption of the authenticated version of the blocks allowed ClearML services to be securely
integrated into existing workflows on Snap4City, making the solution suitable for use in both
experimental and operational environments.

The two Node-RED blocks developed are:

1. Enqueue Task Block (Figure 7-1Figure 7-2): This block allows a task to be sent to the specified
queue, using an input JSON that includes the task_id, queue_name and the necessary input
parameters for the task. The output of the block is a JSON indicating the status of the task (ok or
ko) and the response of the task.enqueue function.

Figure 7-1 Node-RED block for the Enqueue Task service.

Figure 7-2 Node-RED Enqueue Task Block - Detail of input parameters.

Example of input:

{
 "task_id": "hash_del_task_id",
 "queue_name": "queue_name",
 "input": {
 "parameter_1": "value",
 "parameter_2": "value".
 }
}

Code fragment that makes the request to the API to queue the task:

var body = { access_token: accessToken, task_id: task_id,
queue: queue_name,
params: input_params
};

// Make the HTTP POST request
request.post({
url:

Capitolo 5 – Sviluppo e implementazione

54

'https://www.snap4city.org/clearml/serve/enqueue_task', headers: {
"accept": "application/json",
"Content-Type": "application/json"
 },
body: JSON.stringify(body) // Convert body object to JSON string
}, function(error, response, body) { if (error) { const errorMsg = "HTTP request error: " + error.message;
logger.error(errorMsg, { error: error, msg: msg }); node.error(errorMsg, msg); msg.payload = {
status: "ko",
error: error.message
}; node.send(msg); return;
}

2. Block for On-Demand Service (Figure 7-3Figure 7-4): This block calls an on-demand service for

immediate inference, using a JSON that contains the hash ID of the serving machine
(machine_id), the model endpoint (endpoint) and the input parameters for inference. The
output of the block is a JSON with the status and response of the service.

Figure 7-3 Node-RED block for On-Demand service.

Figure 7-4 Node-RED On-Demand block - Detail of input parameters.

Example of input:

{
 "machine_id": "hash_del_serving_machine_task_id",
 "endpoint": "endpoint_name",
 "input": {
 "parameter_1": "value",
 "parameter_2": "value".
 }
}

Code fragment making the call to the On-Demand API

var body = { access_token: accessToken, machine_id: machine_id,
endpoint: endpoint,
params: msg.payload.input || config.input
};

request.post({
url:

Capitolo 5 – Sviluppo e implementazione

55

'https://www.snap4city.org/clearml/serve/ondemand', body: body,
json: true // Ensures the body is sent as JSON and the response is parsed as JSON
}, function (error, response, body) {
 if (error) { const errorMsg = 'Error in ClearML On-Demand Serving Auth node: ' + error.message;
logger.error(errorMsg, { error: error, msg: msg }); node.error(errorMsg, msg); msg.payload = {
status: 'ko',
error: error.message
};
} else {

7.1 Authentication with Snap4City
To ensure that only authorised users can access ClearML Serving services, robust authentication via
Snap4City was implemented. Before Node-RED blocks can be used to queue tasks or request on-demand
inferences, users must authenticate with Snap4City.
The authentication process takes place via an access-token provided by Snap4City. When a user interacts
with Node-RED blocks, the block automatically requests an access-token from Snap4City, which is then
transmitted to the ClearML API at the time of the request. On the server side, the API validates the
access-token to verify that the user is authorised to access the requested services.
This configuration made it possible to offer flexible and scalable inference services, both through queued
and on-demand tasks, while maintaining a high level of security. Integration with Snap4City and
centralised management via Node-RED made these services easily accessible and seamlessly integrated
with the ClearML ecosystem.

7.2 Remote task notification system
The second tool developed is a task running in service mode that constantly monitors the status of tasks
executed on ClearML agents. This task sends automatic notifications via Skype to administrators when a
task:

• It is successfully completed.

• It fails during execution.
Each notification includes the last lines of the task's console log, providing an immediate and useful
account of what happened during execution.
Operation of the Monitoring Task

1. Constant monitoring: The task remains running as a service and monitors the tasks launched on
ClearML agents. Using the ClearML API, the task monitors the status of each running task.

2. Sending notifications: When a task is completed or fails, the system generates a notification on
Skype. This allows administrators to receive real-time updates on task status without having to
manually access the ClearML interface to monitor tasks.

3. Integration with task logs: In addition to the general status of the task, the notification includes
the last lines of the console log, giving an immediate idea of the reason for the success or failure
of the task.

7.2.1 - Executing the Task in Service Mode
ClearML agents support Service mode, a configuration that allows multiple tasks to be executed at the
same time, as opposed to standard mode where an agent executes only one task at a time. In standard
mode, agents are generally used for training models, processes that require the intensive use of all
available resources. In contrast, Service mode is designed to perform light tasks that consume few
resources and remain idle most of the time. Examples of such tasks include periodic cleaning services,
notification services or pipeline controllers, which monitor or manage the workflow without significantly
impacting system resources. This mode is particularly useful for ensuring the continuous operation of
support and monitoring services, while maintaining the availability of resources for more intensive tasks.
An example of a command for starting an agent in Service mode:

Capitolo 5 – Sviluppo e implementazione

56

clearml-agent daemon --services-mode --queue services --create-queue --docker ubuntu:22.04 --cpu-only -
detached

7.2.2 - Integration with Skype
The integration with Skype for sending automated notifications was realised using the Python library
SkPy (SkPy Docs, 2024). This library provides a simple API to interact with Skype, allowing authentication,
chat management and message sending directly from a Python application. SkPy supports both individual
and group chats, making it ideal for real-time notifications about tasks performed in ClearML.

Importing the library: To begin with, we import the SkPy library with the necessary modules for accessing
and managing Skype messages.
from skpy import Skype, SkypeMsg

Logging in to Skype: The Skype account is logged in using the credentials of a bot specifically created for
the lab, which sends notifications. SkPy supports both username and password authentication and the
use of tokens, but for simplicity's sake the username and password approach is used here.

self.sk = Skype('clearml-bot-disit@outlook.it', '***')

Selection of the correct chat: Once logged in, the specific group chat where notifications will be sent is
selected. The chat is identified by its unique ID, passed as an argument to the script.

self.chat = self.sk.chats.chat(chat) # chat is the id of the group chat in which to send notifications.

Message formatting: The message to be sent is formatted using Skype's rich formatting, which allows
links, bold text and monospace to be added for better readability. For example, the link to the experiment
log, task status, project name and task name is provided, along with the console output.

message = "{}Experiment ID {} {}Project: {} - Name: {}{}" "\n{}".format
(self._message_prefix, SkypeMsg.link(task.get_output_log_web_page(),task.id), SkypeMsg.bold(task.status),
SkypeMsg.bold(task.get_project_name()), SkypeMsg.bold(task.name),
SkypeMsg.mono("\n".join(console_output))[-2048:])

Sending the message: Once formatted, the message is sent to the selected group chat. The parameter
rich=True allows the message to be sent with enriched formatting.
self.chat.sendMsg(message, rich=True)

7.2.3 - Starting the Task
The Python script is executed with the chat ID as argument. You can also include an option to receive
notifications about successfully completed tasks, not just failed ones.
python skype_alerts.py --chat '19:1cb604afed954eb6a1e4c7ed9bdc0cfe@thread.skype' --
include_completed_experiments

7.2.4 - Advantages of the SkPy Library:

• Ease of use: SkPy greatly simplifies integration with Skype, enabling authentication, chat
management and messaging in just a few steps.

• Rich Messaging: SkPy supports advanced message formatting (links, bold text, monospace),
making notifications more readable and informative.

• Automation: Thanks to SkPy, it is possible to fully automate the sending of notifications,
integrating them into Python scripts that monitor ClearML tasks and inform users in real time.

This solution proved to be very effective in keeping lab users up-to-date on task status, allowing them to
receive timely notifications of any errors or experiment completions directly in a Skype group chat.

Capitolo 5 – Sviluppo e implementazione

57

Figure 7-5 Example Notification Message on Skype

Capitolo 5 – Sviluppo e implementazione

58

8. Testing and Validation
This chapter provides a concrete example of the development and implementation cycle of a machine
learning model, using ClearML to manage the training, deployment and monitoring process. The aim is
to demonstrate how the system meets the requirements for access by third-party users, use on
authorised machines and monitoring by administrators.

8.1 Model Development and Training
For this test, the example provided by ClearML Train and Deploy Pytorch model with Nvidia Triton
Engine was used (ClearML Serving Example GitHub, 2024). The model used is a convolutional neural
network (CNN) for digit recognition, using the MNIST dataset, one of the most popular datasets in the
field of computer vision.
The development of the model took place on JupyterHub, where a ClearML task was initialised and sent
the training code to agents configured on machines equipped with GPUs. The selected agent managed
the training automatically, making maximum use of the available resources and recording each phase of
the training on ClearML.

Training Steps:

• Virtual environment created on JupyterHub with the necessary packages installed.

• Task ClearML initialised for model training using the command:
python train_pytorch_mnist.py

• Once completed, the trained model was automatically saved to ClearML, making it available for
subsequent inference tasks.

8.2 Deploying the Model on ClearML Serving
After training, the model was put into production using ClearML Serving. The deployment process
involves two main steps:

Configuration of the Serving Machine
An administrator must configure a machine for serving using ClearML. This operation is only performed
once per machine. The administrator configured the machine by executing the following commands:
docker-compose --env-file example.env -f docker-compose-triton-gpu.yml up

Subsequently, the machine was registered on ClearML Utils (see Chapter 0) by entering the IP address
and ID of the machine's inference task to make it available to developers.

Creation of the Endpoint for Inference
The developer created an inference endpoint for the model trained with ClearML Serving via the
following command:

clearml-serving --id <serving_service_id> model add --engine triton --endpoint "<model_name>" --preprocess
"preprocess.py" --name "<model_name>" --project "<project>"

After the endpoint was created, it was registered on ClearML Utils by entering the serving task id and
endpoint name (see Chapter 0) to allow third-party users to access it easily without needing to know the
technical details of the task or the IP address of the machine.

8.3 Testing with Node-RED Block
To test the on-demand inference, the Node-RED block developed specifically to interact with the On-
Demand API was used. This block allows the user to send images as input and receive the model
prediction as output. The Figure 8-1 shows the flow realised to test the service.

Capitolo 5 – Sviluppo e implementazione

59

Figure 8-1Test - Node-RED flow with the On-Demand service block

• Input (Figure 8-2):
o An image of a figure taken from the MNIST dataset.
o Hash of the machine id
o Endpoint name

Figure 8-2 Test - Input of the request to the On-Demand service to make inference with a digit recognition

model.

• Output (Figure 8-3):
o The figure predicted by the
o Request status

Figure 8-3 Test - Response of the request to the On-Demand API with a pattern for digit recognition.

8.4 Model Monitoring
The monitoring system was designed to allow administrators to view detailed metrics on model
operation and resource utilisation. Thanks to Grafana (Figure 8-4), it is possible to monitor the progress
of inferences, the distribution of predictions and the resource utilisation of the serving machines in real
time.
Administrators can also check the request logs via ClearML Utils, where each call to the endpoint is
tracked and logged, providing complete control over the operations performed (see Chapter 0).

Capitolo 5 – Sviluppo e implementazione

60

Figure 8-4Test - Model monitoring in production with Grafana, counter of how many times each digit was

predicted.

