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Abstract— Traffic management and sustainable mobility are the central topics for intelligent transportation systems (ITS). 

By means of modern technologies, it is possible to collect real-time traffic flow data to extract useful information to monitor 

and control vehicular traffic. On the other hand, costs to obtain this piece of information are high. It requires either direct 

measures in the network road by installing large number of sensors (more precise data) or acquiring data from international 

providers supplying data coming from onboard units, mobile app, navigators, etc. In current paper, this problem has been 

addressed providing a solution granting traffic flow data in each road segment of the whole network by reconstructing the 

computation by means of data from few scattered traffic sensors in fixed positions of the road network. The proposed approach 

combines the solution of nonlinear Partial Differential Equations (PDEs) with machine learning for improving the state-of-the-

art solutions of PDE. The result has been a higher precision with respect to PDE-based solutions, and a strongly reduced 

execution time. Several different machine learning models have been compared for such a purpose, demonstrating the general 

viability of the hybrid architecture proposed. The research result has been obtained in the framework of both the Sii-Mobility 

national project on transport systems, and MOST, the National Center on Sustainable mobility (both funded by the Italian 

Ministry of Research), by exploiting the Snap4City platform. 

Keywords— traffic flow reconstruction, traffic flows, machine learning, hybrid architectures, machine learning PDE solution.   

I. INTRODUCTION 

Traffic flow computation consists in obtaining real time 
traffic flow state in each segment of a road network in a 
urban or rural area. Such a computation is fundamental for 
implementing a large number of smart services such as: 
dynamic route guidance, road digital signage, congestion 
detection, traffic reduction; fuel consumption and pollution 
emission monitoring, etc. [1], [2]. Often, traffic flow 
estimation is related to a monitored area based on few fixed 
points/sensors and thus no information is provided in other 
connected road segments free of sensors. Many 
contributions focus on this field of research as in [3]-[9]. 
The usage of large number of traffic flow sensors can help 
in getting more precise estimations in the whole city (road 
network), but costs may become unaffordable. Traffic 
density measures are typically obtained by stationary 
sensors on fixed positions and they are usually of different 
kinds: TV cameras, road spires, etc. [10], producing 
measures in terms of traffic flow density, velocity and 
number of vehicles. Due to sustainability reasons, the 
number of deployed sensors has to be limited. Thus, it is 
mandatory to adopt some reconstruction algorithms to 
obtain the traffic flow condition in each road segment of the 
city in order to have dense traffic flows in the unmeasured 
road segments. 

Surrogated traffic flow data can be obtained from: 
Mobile Apps, on board units (insurance black boxes for 
instance), social media app [11], and recently also from 
vehicle networks [12]. In [13], a deep Restricted Boltzmann 
Machine and Recurrent Neural Network, RNN, architecture 
has been used to predict traffic congestion evolution based 
on GPS data from taxis, and thus on their position and 
velocity, etc. In [14], a smartphone-based crowd sensing 
system for traffic detection and measure has been proposed, 
where data are gathered from the handheld devices. Data 
coming from navigator Apps (e.g., TomTom, Google map, 

Waze), at long term, could be very expensive for a 
municipality with respect to the installation of sensors. 
Those measures are not related to the actual counting of 
vehicles, since they are based on measuring single vehicle 
velocity, which does not directly relate to road traffic 
density. Vehicular Ad-Hoc Networks, VANET, are 
modeling communication among vehicles, thus creating a 
shared network of information which could be used to 
understand local traffic [12], [15]. On the contrary, the 
usage of TV Cameras located in specific critical points 
allows to perform direct measures, which reduces costs, 
while increasing precision in specific points. Then, multiple 
areas/lanes can be controlled with a single installation, so as 
to enable the control of a high number of traffic flows. 
Traffic flow sensors provide continuous measuring of traffic 
on selected roads at fine grain, and in most cases, they also 
provide information about the kinds of vehicles: busses, 
tracks, cars, bikes, etc. Generally speaking, to setup a 
network of traffic flow sensors in a city drastically avoids 
the costs of taking updated data from third parties such as 
Google or Navigator mobile Apps, which provide statistical 
data, instead of specific and direct measures.  

A. Related Work  

In the context of traffic flow theory, a distinction has to be 

done between traffic flow Predictions in specific points in 

urban contexts or highways (short or long terms in the 

future [9]) and traffic flow Reconstruction at small and 

large scale (few roads, highways’ segments or whole city 

networks).  

In the context of traffic flow predictions, a large number of 

methods [7], [9], [16] use data-driven Machine/Deep 

Learning approaches for predicting traffic flow data or 

congestion levels in locations where those values are 

measured via sensors. The traffic flow prediction is 

performed by using a stacked autoencoder (SAE) model in 

[7], the author uses the powerfulness latent representation 
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to build and infer the next flow traffic estimation in specific 

points. In [9], authors compared a large number of machine 

and deep learning solutions for traffic flow prediction 

computed on the basis of different data sources. In [16], 

authors combine convolution and LSTM (Long Short-

Term Memory) to form a Conv-LSTM module which can 

extract the spatial-temporal information out of the traffic 

flow information. Additionally, they adopt a Bi-directional 

LSTM to analyze historical traffic data information and get 

traffic flow periodicity features. In [17], authors use a 

representation of the road network with a graph embedding: 

the encoded information is applied to a generative 

adversarial network to obtain road traffic state information 

in real-time.  

      The Traffic Flow Reconstruction, TFR, is the process 

to estimate dense traffic density (flow) – e.g., vehicle per 

meter (or vehicles per second) – for each road segment 

within the road network by starting from a limited number 

of traffic flow sensors or data providing traffic density 

(flow) in the roads, or velocity in some cases and at the 

same time instant. It can be regarded as an extrapolation 

approach passing, for example, from 100 sensors data to 

10.000 traffic flow data of road segments. TFR approaches 

can be classified into three main categories: model-driven, 

data-driven and mixed approaches.  

     TFR Model-driven approaches are those taking into 

account the physical model of traffic in the spatio-temporal 

domain, such as both agent-based and those solving 

differential equations. Agent-based solutions for the traffic 

flow reconstruction are substantially simulators which 

compute traffic flow by modeling vehicles as agents, thus 

showing typical problems of scalability for large road 

networks [18], [19], [20]. For example, InterSCSimulator 

[19] is an agent-based solution which may scale up to 

relevant networks at the expense of memory and 

computational time. Large scale simulators are often based 

on origin destination data (O-D) and population 

characteristics [21]. They focus on basic concepts and 

methods of discrete choice analysis. They describe the 

application of this methodology to travel demand 

modelling. Discrete choice models use the principle of 

utility and benefit maximization: operational models often 

consist in the characterization of parameterized utility 

functions via statistical inference [22]. Discrete choice 

models are usually applied to forecast trips by starting from 

origins-destinations data and considering different 

transport modalities [23]. Other simulators have been 

reviewed and compared in [24], identifying limitations 

when it comes to both traffic flow evolution and addressing 

large scale cases or small events. DEUS [15] is a Discrete-

Event Universal Simulator used to simulate a Vehicular 

Ad-Hoc Network. VANET [12] has been used with SUMO 

(Simulation of Urban Mobility, http://sumo.dlr.de) to 

create microsimulations of traffic crossroad distribution. In 

those cases, the indeterminacy of vehicle behavior at 

junction is performed by using data coming from O-D or 

by making samples at the crossroads.  

According to a different approach with respect to  the 

above described Agent Based, a traffic flow can be 

modeled as a fluid moving into the road network, and thus 

the TFR problem can be regarded as the classical solution 

of the LWR (Lighthill-Whitham-Richards) model [25] and 

[26], which considers traffic density in terms of nonlinear 

Partial Differential Equations, PDEs, and it is used to 

estimate traffic flow using scattered observations, location 

of sensors and so forth. In this context, the estimation of 

traffic distribution at junctions plays a crucial role on the 

effectiveness of the LWR model application in real 

contexts and its related solution is not trivial for large 

networks, so called macroscale [27]-[31]. Moreover, traffic 

distribution at junctions may change over time during day 

and week, and thus, its computational costs may be very 

high. 

On this line, a scalable traffic flow reconstruction 

approach at macroscale has been proposed and applied in 

real-world contexts of (large) city road networks [32]. Such 

an approach is based on LWR model where the 

indeterminacy of traffic distribution at junctions has been 

solved by means of a stochastic relaxation technique which 

reduced system errors at the expense of computational cost, 

while resulting more scalable and effective with respect to 

agent-based solutions. Limitations of this approach are 

related to the precision of the estimation and on the 

execution time that could be improved. 

TFR Data-driven approaches should derive traffic state 

by means of the dependences learned from observed data 

using statistical or machine learning methods. They should 

rely on real time and historical data in each segment to 

extrapolate data in each and every segment. This means that 

it should not require a priori knowledge of traffic models 

and laws, as it occurs with model driven solutions. Machine 

and deep learning solutions can provide predictive 

capabilities for nonlinear phenomena as long as historical 

data about dense traffic flow are available. Data driven 

approaches have been also used for traffic flow analysis. 

For example, in [33], authors have proposed machine 

learning tasks to analyze road networks to perform vehicle 

speed limit classification. Thus, in current literature, there 

are many data-driven approaches without a specific address 

of the traffic reconstruction over the entire road traffic 

network [34]. 

In order to overcome such limitations belonging to the 

above-described TFR Data Driven solutions, some TFR 

Hybrid Approaches have been proposed in literature, as 

well as in present paper. TFR Hybrid approaches combine 

model-driven and data-driven methods to achieve more 

accurate and efficient results for TFR computing. In [35], 

authors have investigated the use of a model-based neural 

network for traffic prediction problems, using noisy 

measurements coming from Probe Vehicles. Designing a 

single optimization model, they developed a solution using 

a deep neural network to reduce both identification process 

and other processes like reconstruction, prediction, and 

noise rejection. The physics-informed deep learning 

(PIDL) framework has been proposed for solving PDEs and 

recently it has been applied to various physical models [36]. 

In the context of TFR, PIDL can describe the LWR model 

and it has been only applied to simple road networks, like 

single road or road ring [37], [38] and [39]. In such studies, 

no road crossing modeling has been considered to address 

the indeterminacy at junctions, which would involve the 

solution of the so-called Riemann's problem.  

Basically, when it comes to large road networks having 

a limited number of traffic measurements (traffic data 
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sensors), the usage of data-driven or hybrid approaches is 

considered prohibitive in terms of accuracy to capture the 

vehicular traffic state of the whole network by assuming as 

input data the observed data only, without any additional 

information. 
Moreover, non-toy solutions are affected by data 

discontinuities on observed sensor data in real-time, caused 
by malfunctions of sensors and/or communication, thus 
reducing the accuracy of the whole network data and TFR.  

B. Article aim and structure 

In this paper, two TFR Hybrid approaches have been 
provided combining models based on machine learning 
approaches and PDE solution, so as to solve indeterminacy 
at junctions. The indeterminacy is due to the fact that 
measuring the traffic flow arriving at a crossroad without 
measuring the traffic produced in the output roads, the 
corresponding out flows can be locally undetermined. On 
the other hand, globally the distribution of flows on the 
outputs can estimated by exploiting the knowledge of flow 
in the other parts of the road network. 

The proposed solutions aimed at producing accurate 
TFR of large road network, main problems are related to: (i) 
density of traffic flow estimations on large graph roads from 
scattered data sensors (agent based solutions are unsuitable 
and do not address the indeterminacy at junctions, PDE 
based model driven solutions are computationally 
expensive and may provide dense reconstructions in small 
scale, data driven solutions  at large scale are not available 
in the literature), (ii) indeterminacy of the traffic partition at 
junctions (difficult to be solved by any approach, see model 
driven stochastic relaxation approach of [32]), (iii) high 
computational complexity and thus complexity of execution 
time (demanding a new estimation of TFR at each new 
sample of the sensors for the whole network), which can be 
more easily addressed by machine/deep learning solutions 
rather than agent based and model based solutions in 
general, and (iv) producing TFR also in the event of sensor 
data showing discontinuities, e.g., missing observed data.  

In more details, in this paper, a Hybrid TFR is proposed 
by integrating machine learning with a data driven solution 
based on PDE for large scale TFR computation in order to:  
(a) improve the estimation accuracy of the TFR with respect 
to the results of data driven based on PDE solutions [32], (b) 
speed up the execution time needed for computing TFR with 
respect to the performance in order to make the solution 
more scalable for very large networks. The indeterminacy 
of the traffic flow distribution at junctions has been solved 
at level of TFR model. Therefore, the proposed Hybrid 
approach is based on combining the TFR model based on 
PDE solution with machine learning approaches by means 
of two possible innovative hybrid architectures, which are 
identified in the paper as Case (i) and Case (ii). Data driven 
models for TFR have been trained on the history of traffic 
reconstruction data to learn the traffic dynamics behavior in 
a large network. This approach leads to solve the problem 
related to traffic distribution at the junctions which is 
generally very expensive from a computational point of 
view, via model-driven approach. Then, the proposed 
hybrid approach reduces the execution time for both the 
entire TFR process and the whole road network. Moreover, 
the combination of data dependency obtained with such 
data-driven approach, together with the understanding of 
physical model and its related traffic distribution through 

the PDEs solution, allows to produce more accurate TFR 
solutions than those attainable from model driven solutions 
at present state of the art, e.g., [32]. Moreover, data 
imputation methods have been also considered to solve the 
problem of missing sensors data, which may cause, as to 
model-driven solutions, the impossibility of computing the 
solution when the number of missing sensor data is large in 
space and time. This has brought a general improvement of 
the TFR accuracy.  

 To this end, a range of Machine Learning, ML 
approaches (Adaboost [40], RF [41], XGboost [42], 
Bayesian [43], Decision Tree [44], ExtraTree [45], MLP 
[46]), have been compared to identify the best model to 
improve the PDE based solutions in terms of TFR. The 
results presented in this paper have been validated in a 
context of data related to the actual traffic network of 
Florence city metro area. This current study and its related 
outcomes have been produced and validated by exploiting 
the Snap4City framework for smart city, mobility and 
transport and data analytics, also using Km4City/Sii-
Mobility graph model and tools. The project has been 
funded by the national Ministry of research [47] and by 
MOST, Italian National Center on Sustainable Mobility of 
the national Ministry [48]. Algorithms have been put in 
execution by exploiting semantic model [31], [49] and the 
Snap4city Platform [50], [51]. 

The paper is organized as follows. In Section II, the 
computation of traffic Flow reconstruction via PDE solution 
is recalled, together with the approach for result assessment. 
In Section III, the proposed hybrid architecture and solution 
to improve precision are described. In Section IV, both 
context and data used for these experiments are presented. 
Section V describes in detail the hybrid solution exploiting 
the machine learning approaches and the first obtained 
results, Case (i). In Section VI, an improved version of the 
solution proposed in Section V is presented, by data analysis 
and exploiting temporal information on data, thus focus is 
on Case (ii). In a subsection of Section V, outcomes are 
compared one another and with respect to model driven 
solutions. Conclusions are drawn in Section VII.  

II. TRAFFIC FLOW RECONSTRUCTION 

Before discussing the proposed hybrid solutions, an 

overview of model driven approaches for TFR based on 

PDE solution is needed. In the latter, TFR computation is 

performed by solving a nonlinear equation based on vehicle 

conservation, which is described by the following scalar 

hyperbolic conservation law in a single road segment: 
𝜕𝜌(𝑡,𝑥)

𝜕𝑡
+

𝜕𝑓(𝜌(𝑡,𝑥))

𝜕𝑥
= 0,                    (1) 

 

where, 𝜌(𝑡, 𝑥) is the traffic density of vehicles, with values 

from 0 to 𝜌𝑚𝑎𝑥, where 𝜌𝑚𝑎𝑥 > 0 is the max traffic density; 

𝑓(𝜌(𝑡, 𝑥)) function is the vehicular flow which is defined 

by means of the product 𝜌(𝑡, 𝑥) 𝑣(𝑡, 𝑥), where 𝑣(𝑡, 𝑥) is 

the vehicle speed; and boundary conditions 𝜌(𝑡, ℎ) =
𝜌ℎ(𝑡) , 𝜌(𝑡, 𝑘) = 𝜌𝑘(𝑡) , initial values 𝜌(0, 𝑥) = 𝜌0(𝑥) , 

with 𝑥 ∈ (ℎ, 𝑘). In the case of first order approximation, 

we assume that 𝑣(𝑡, 𝑥) is a decreasing function, depending 

on the density, then the corresponding flow is a concave 

function. Thus, we consider the local speed of the vehicles 

as 𝑣(𝜌) = 𝑣𝑚𝑎𝑥(1 −
𝜌

𝜌𝑚𝑎𝑥
)  and then 𝑓(𝜌) = 𝑣𝑚𝑎𝑥 (1 −



 

 

𝜌

𝜌𝑚𝑎𝑥
) 𝜌 , where 𝑣𝑚𝑎𝑥  is the speed limit on a given road 

segment (these assumptions are known in the literature as 

the Greenshield’s Model). Equation (1) may be solved by 

means of an iterative process at finite differences applied to 

each road segment of the whole network. As proposed in 

[32], the achievable solution is grounded on a Stochastic 

Relaxation Approach based on the measures of Traffic 

Flow data in a limited number of sensor points at each time 

instant. In this paper, the solution presented in [32] is 

denoted as SRA4TF. 

       At each timestamp, SRA4TF solution produces a value 

of traffic flow density in each road segment of the network, 

typically of 20 meter, as unit, that is the TFR. The accuracy 

of SRA4TF solution mainly depends on the stochastic 

relaxation approach for estimating Traffic Distribution 

Matrices (TDMs), which are the traffic flow distributions 

at junctions. A TDMs describe the percentage of vehicles 

getting out of each outcoming road with respect to those 

getting in from each incoming road of the junction. Thus, 

the TDM is defined as 𝑇𝐷𝑀 = {𝑤𝑗𝑖}𝑗=𝑛+1,…,𝑛+𝑚,𝑖=1,…,𝑛 so 

that 0 < 𝑤𝑗𝑖 < 1 and ∑ 𝑤𝑗𝑖
𝑛+𝑚

𝑗=𝑛+1
= 1, for 𝑖 = 1, … , 𝑛 and 

𝑗 = 𝑛 + 1, … , 𝑛 + 𝑚 , where 𝑤𝑗𝑖  is the percentage of 

vehicles arriving from the 𝑖-th incoming road and taking 

the 𝑗-th outcoming road (assuming that, on each junction, 

the incoming flow coincides with the outcoming flow). The 

values of 𝑤𝑗𝑖  depend on the time of the day and of day of 

the week, etc., on the road size, cross light settings, etc., 

and thus, it is unknown a priori. The values of 𝑤𝑗𝑖  are 

estimated by giving the lower mean error by means of this 

stochastic relaxation technique as described in [32].  The 

computing of TFR is progressively performed on a parallel 

architecture. The estimation of traffic flow density for a city 

(e.g., in Florence there are more than 30.000 road segments 

or units) at time instant t would depend on traffic flows at 

time t-1 in the whole network, and on the new measures 

coming from sensors at time t.  

      Once 𝑇𝐷𝑀(𝑡) are estimated (or initially guessed), the 

SRA4TF solution computes the TFR in the road network 

and verifies the Root Mean Square Error, RMSE, (or Mean 

Absolute Error, MAE) with respect to actual values in 

sensor locations. This is performed by computing the 

solution excluding data from each different sensor (all of 

them) by means of a Leave-One-Out Crossing-Validation 

approach (LOOCV), so as to estimate the deviation from 

the reconstructed traffic density 𝜌𝑅(𝑡), with respect to the 

observed density by the sensor 𝜌𝑂(𝑡), for each time 𝑡 in 𝑇. 

In the rest of the paper, we refer to R and O to denote 

reconstructed and observed traffic flow densities (number 

of vehicles for space unit), respectively. Then, in a road 

network having 𝑚 traffic sensors, the LOOCV approach 

consists in the application of the model to the set of the 

observed data at time 𝑡, that is 𝑶(𝑡) = {𝑂1(𝑡), . . . , 𝑂𝑚(𝑡)}, 

by excluding the k-th observation 𝑂𝑘(𝑡)  from 𝑶(𝑡) , for 

each 𝑘 = 1, … , 𝑚 . Then, the model is applied to the 

remaining set of 𝑚 − 1  sensor observations and the 

reconstructed density 𝑅𝑘(𝑡)  in the road segment (unit) 

where the k-th sensor is located, can be estimated and 

compared with 𝑂𝑘(𝑡)  via RMSE or MAE estimation as 

follows: 

 

RMSE(k) = √
𝛴𝑡=1

𝑇 (𝑅𝑘(𝑡)−𝑂𝑘(𝑡))
2

    

𝑇
,   (2) 

MAE(k) =  
𝛴𝑡=1

𝑇 (|𝑅𝑘(𝑡)−𝑂𝑘(𝑡)|)

𝑇
.   (3) 

 

     The RMSE and MAE are used to measure error values 

when the perfect fit by 0. The unit of measure of RMSE and 

MAE is the same of R and O number of vehicles for space 

unit. Therefore, a value of 0.5 represents a ½ of a vehicle 

in the space of 20 meter. For each round, the stochastic 

relaxation may produce a new minimum of the RMSE that 

is taken as a reference status, together with the produced 

new values of the 𝑇𝐷𝑀(𝑡), for next iterations. At each 

timestamp, the RMSE(k) for each sensor in the LOOCV is 

measured and the RMSE(system) (average value of the 

RMSE on all the m LOOCV sensors) is considered:  

 

RMSE(system) = 
1

𝑚
∑  𝑚

𝑘=1 𝑅𝑀𝑆𝐸 (𝑘). (4) 

 

The value of RMSE is higher when traffic density is high 

and thus it reflects the hourly behavior of incoming and 

outcoming vehicle flow in the city having its maximum in 

the morning, at about 8 am. On the other hand, the ratio 

from RMSE and traffic flow density is almost constant in 

daily time and it is in the range of 25% (see for details [32]). 

The computation of the MAE(system) is estimated in 

similar manner on the basis of Eq. (3).  

      The computational complexity of SRA4TF depends on 

the dimension of the road network. As to the metropolitan 

network of Florence, it includes 1390 nodes (or 

intersections, junctions), 130 traffic sensors and 31217 road 

segments (units) of 20 meter. Once 𝑇𝐷𝑀𝑠 are estimated, 

then the computational complexity of traffic reconstruction 

at each time t is an O(H(V+U)) where: V is the number of 

nodes, U is the number of road segments and H is the 

number of iterations (generally H is equals to 250). Since 

U is much larger than V, then we definitively have a 

complexity of an O(HU). The stochastic relaxation 

approach randomly assigns 𝑇𝐷𝑀 values depending on road 

featuring. Then, at each attempt, if the local error is lower 

than the previous one, weights are confirmed. The 

procedure continues to try new TDM until the computed 

RMSE(system) is minimized, by means of a sort of 

Simulated Annealing. The procedure is computationally 

heavy, and it is typically sporadically performed to update 

the TDMs. Typically, the solution converges in 600 

iterations. At each iteration, the LOOCV approach via 

parallel structures considers more than 4 million of road 

segments/units (of 20 meter). 

III. HYBRID ARCHITECTURE FOR IMPROVING PRECISION 

As stated in the Introduction, in this paper, we are 

presenting a hybrid solution able to improve model driven 

solutions, such as SRA4TF, by using machine learning. 

More precisely obtaining: (i) improvement of precision in 

dense traffic flow estimation, reduction of RMSE(system), 

(ii) reduction of execution time. With this aim, a number of 

ML techniques have been tested as listed above. In [37], 

[38] and [39], small road segments/networks were studied 

by using ML approaches exploiting the knowledge of road 

traffic physical model in the loss function. The proposed 



 

 

hybrid solution overcomes this limitation covering the 

whole network with a new hybrid architectural solution, 

which could be also used in solving/improving other PDE 

solutions. The hybrid solution proposed in this paper 

consists in using ML together with the exploitation of 

knowledge about the road network traffic and the SRA4TF 

solution; it can be regarded as a neuro-symbolic approach.  

     Indeed, this paper has its focus on two different 

approaches to tackle problems (improving precision, and 

performance of TFR estimation from sensors data), which 

are called Case (i) (see Section V), and Case (ii) (see 

Section VI). Each of them shares the same architecture in 

terms of data flow for the phases of training and execution 

of the ML solution (passing from the former to the latter 

with the trained model and parameter). In Case (i), the ML 

model is trained by taking in input the traffic flow densities 

observed in the locations of sensors and the corresponding 

values of TFR estimated by the SRA4TF. Case (ii) is 

improved by adding some features related to temporal 

information in order to model in terms of feature the 

seasonality of sensors data and traffic flows. Such temporal 

information is used to distinguish days from festive, pre-

festive and working days and consider the related time 

slots. 

 

In the following, 𝑶(𝑡) means the vector of the observations 

(measures) from sensors at time t, while 𝑹(𝑡) is the vector 

of the traffic density reconstructed in other segments of the 

road network at time t. The SRA4TF produces a traffic 

density for the whole road network which can be regarded 

as vector 𝑹(𝑡) as follows:  

 

SRA4TF(𝑶(𝑡 − 1), 𝑹(𝑡 − 1), 𝑶(𝑡),RoadGraph) → 𝑹(𝑡). 

 

Having m traffic sensors in a road network, we obtain that 

the total road segments (units) in the road network is m+n 

considering 𝑶(𝑡) = {𝑂1(𝑡), . . . , 𝑂𝑚(𝑡)}  and 𝑹(𝑡) =
{𝑅1(𝑡), . . . , 𝑅𝑛(𝑡)}. 

A. Hybrid Architecture, Case (i) 

The hybrid architecture for TFR computation of Case (i) is 

reported in Figure 1, where both training and execution 

data flows are reported. The training data flows are reported 

as dashed lines, while the execution data flows are 

represented as dotted lines. The training phase is fed by 

using data produced by both observation and SRA4TF 

solution (green lines). ML approach in Case (i) learns a 

Model able to produce a full set of traffic flow densities on 

the basis of observations, that is the TFR, at each time 

instant, disregarding  its temporal evolution. 

 

 
Figure 1. Hybrid training (continuous and dashed lines) and ML 

data driven execution (dotted line) for traffic flow reconstruction. 

Continuous lines describe the model-based traffic flow 

reconstruction flows. 

The ML is trained without considering the temporal 

information related to the evolution of time series: 

 

𝑓(𝑶(𝑡)) → 𝑹(𝑡)          Case (i) 

 

Thus, the SRA4TF is used for generating dense traffic flow 

training data with respect to observed values, for the ML 

function 𝑓 (.). Moreover, function 𝑓 (.) learns how to 

compute the TFR according with 𝑹(𝑡) on the basis of the 

observed values 𝑶(𝑡). Once trained, the ML solution could 

be used at run time to produce dense traffic flow results in 

faster manner (if compared to PDE iterative solution). The 

resulting 𝑹(𝑡) can be compared with the measured values 

obtained by sensors by using the LOOCV approach in 

specific 𝑶(𝑡) locations, thus estimating the RMSE as 

depicted by means of the bold arrows in Figure 1. This has 

allowed us to assess the precision of the produced results 

by using Case (i) proposed. 

IV. URBAN CONTEXT AND ASSESSMENT 

In order to assess the accuracy of the estimated 𝑹(𝑡) from 

SRA4TF and from ML solutions, beyond the training 

period, the estimated 𝑹(𝑡) has to be compared with respect 

to the 𝑶(𝑡)  by using the LOOCV approach and thus 

estimating the RMSE as described in Section II. In terms of 

performance, the main advantages of a data-driven model 

usage have to do with time efficiency with respect to the 

SRA4TF solution which is iterative.  

A. Data vs City Scenario 

As to the assessment of the proposed solution, a small road 

network (subnet of the whole metropolitan traffic network 

of Florence) included in the bounding box in Figure 2 has 

been taken under exam; 7 traffic sensors are located and 

denoted as: METRO707, METRO709, METRO740, 

METRO741, METRO756, METRO757 and METRO814 

(in the context of https://www.snap4city.org Florence 

knowledge base and Organization). The considered area is 

constituted by 735 road segments (units) and 103 

intersections/junctions or nodes, thus TDMs for SRA4TF.  

  

https://www.snap4city.org/


 

 

 
Figure 2. Representation of real-time traffic flow reconstruction 

data over the network within the city of Florence. The bounding 

box delimits the subnetwork where data have been taken from to 

be analyzed in present work. 

The area of Figure 2 is part of the road network of the 

metropolitan area of Florence where the SRA4TF solution 

for computing TFR has been operative since many years. 

By means of incoming/outcoming traffic flows 

observations on the border, the selected subnet satisfies the 

traffic flow conservations in the area leading to a correct 

SRA4TF model application. Moreover, the selected subnet 

is relevant in terms of traffic flow in the city of Florence, 

since it constitutes one of the high traffic areas and includes 

one of the main accesses to city downtown and main 

railway station.  

The training set is based on traffic sensor data updated 

every (about) 10 minutes (144 measures should be 

observed per day per sensor) during the weeks from 2019 

November 1st to 2020 February 29th, i.e., 24 (hours) per 

121 (days). The entire dataset is composed by 13208 

observations O(.) from 7 sensors, while 13208 

reconstructions R(.) of the traffic density can be computed 

in 728 units composing the selected subnet of 735. During 

the day some observations may be missing from some or 

all the sensors due to a given number of reasons (lack of 

connectivity, faults, maintenance, etc.): when many 

observations are missing, SRA4TF does not produce 

results. What may physically happen is that one or more 

sensors would not provide data for some samples or even 

days, and this occurrence can be regarded as local missing 

Spatial and Temporal at the same time. In some special 

cases, the whole area may lack of data when the gateway is 

under maintenance; therefore, a complete global missing 

data for the whole area is obviously spatial and temporal 

together. As to the time period taken for training and test, 

most days did have all the correct 96 observations (each 

sensor produces 4 measures per hour, and thus 96 per day). 

In fact, from Figure 3, 23 days show all the values from 

sensors, while the remaining days have some missing 

values. Most days have more than 60% of their traffic 

sensors values. Therefore, local missing and short time 

global missing are solved as discussed hereafter. Global 

missing for long periods may be covered with the so-called 

typical time trends computed on statistical basis and long 

terms predictions. Sensitive analysis on missing rates for 

short terms predictions has been carried out in [9].   

 

 
Figure 3. Histogram of missing observations during the selected 

time period for each day under consideration. 

 B. Estimated Traffic Flow Reconstruction via SRA4TF 

Please note that one of the aims of this proposed solution is 

to reduce errors in computing the TFR produced by 

SRA4TF being the basis of Case (i) architecture, as 

reported in Figure 1. For this reason, in this section, we are 

recalling a description of R(t) produced by SRA4TF with 

respect to observations O(t). The SRA4TF solution has 

turned out to be one of the best solutions in the state of the 

art in [32].  

     Thus, the assessment reported in Figure 4 depicts both 

MAE and RMSE (at level of sensor location using 

LOOCV), over 3500 timestamps (which constituted about 

30% of the above-described dataset). The reported errors 

are associated with each traffic sensor where its actual 

value is also estimated and its average estimation, in terms 

of (mean and median) system error, is also considered in 

the selected subnet. 

 

 
Figure 4. MAE and RMSE at traffic sensors for SRA4TF. 

According to LOOCV approach, the positions of sensors 

present MAE and RMSE values close to (or less than) the 

vehicular density of 0.5 cars/20m, except for METRO814. 

In such a location sensor measured traffic data are very high 

and they are typically 2 or 3 times greater than others, 

therefore traffic volume is affecting model accuracy. Yet, 

normalized errors, with respect to the traffic volume in each 

sensor location, allow a similar behavior as described in 

[32].     

C. Assessment Metrics 



 

 

The above presented approach has been validated by taking 

into account different aspects: (i) the observed data are only 

available on sensor locations, (ii) the validation can be 

performed using LOOCV scheme, (iii) the aim is to reduce 

the general error of SRA4TF in computing TFR. Once the 

training with ML approaches has been performed, both 

MAE and RMSE between the left-out target sensor and the 

estimated value in the observation for both cases are viable.  

Therefore, the new hybrid approach of Figure 1 and 

original SRA4TF can be compared on the basis of MAE and 

RMSE via LOOCV on single sensor position or at system 

level MAE(system), RMSE(system). In addition, we can 

compare the new hybrid approach and the original SRA4TF 

by comparing the whole TFR in all segments; we have to 

be sure that convergence on sensors location, aiming at 

reducing the error in those locations, does not degenerate 

the precision in the other segments. More precisely, the 

mean TFR deviation 𝛥𝑅 is computed as: 

𝛥𝑅 =  
1

𝑇
∑ 𝛥𝑅(𝑡)

𝑇

𝑡=1

. 

Where instant deviation is: 

𝛥𝑅(𝑡) =  
1

𝑛
∑ |𝑅̂𝑧(𝑡) − 𝑅𝑧(𝑡)|

𝑛

𝑧=1

 

 

and where: 𝑅𝑧(𝑡)  is the traffic density value of the zth 

reconstructed unit at timestamp t using SRT4TF and 𝑅̂𝑧(𝑡) 

is the reconstructed traffic density value by the data-driven 

model of the zth unit at timestamp t by the data-driven 

model.  

V. MACHINE LEARNING APPROACHES CASE (I) 

In this section, we report the outcomes related to the usage 

of the above-mentioned machine learning techniques in the 

architectural context described in Figure 1. Different ML 

solutions have been compared, with the aim of identifying 

the best possible solution to learn and compute TFR. To 

this end, we have considered ensemble learning techniques 

such as Adaboost [40], Random Forest, RF [41], and 

XGboost [42]. However, we took into account also more 

concise and interpretable models such as a Bayesian 

regressor [43], a Decision Tree, DT [44], ExtraTree [45], 

and multi-layer perceptron, MLP [46]. Other ML and deep 

learning, DL, architectures could be applied: the value of 

what is proposed in this paper is not in the specific adopted 

model, but in the hybrid architecture. In fact, we could 

demonstrate that a number of ML approaches can be used 

for the same purpose, maybe with some adaptations 

according to the ML/DL adopted models. 

All the models have been trained with the same training set 

and validated on the same validation data set, so as to 

perform the comparison on the same conditions. As 

mentioned in Section IV.B, validation data set is 

constituted of about 30% of the entire dataset which is 

described in Section IV.A. The remaining 70% is devoted 

to the training phase. The selection has been random. As to 

experiment settings, we adopted the following parameters. 

For Adaboost a maximum of 50 decision trees has been 

used with a maximum depth of 3 to improve the error. RF 

had 100 decision trees each as base estimator that is grown 

to minimize the absolute error with the target without 

limitation in depth. XGBoost model enclosed decision 

trees built with a max depth of 6 using all features to 

improve the previously fitted tree. Bayesian model 

employed a Gamma distribution prior for the estimation of 

the parameters, having as hyperparameters alpha and 

lambda equal to 1e-6. The DTs had no limits in depth and 

have been trained to minimize the absolute error with the 

target. ExtraTrees have been built using a maximum of 

100 decision trees using all features to find the best split. 

MLP had a single hidden layer composed by 100 neurons 

using as activation function ReLu, and the activation 

function of the output layer has been ReLu; the optimizer 

used to train the network has been Adam, the network has 

been trained by using MAE as loss function. 

A. Experimental Results for Case (i)   

According to the above-described assessment, for Case (i) 

MAE and RMSE have been computed for SRA4TF method 

and compared with the results obtained by using the above 

presented ML techniques. Both MAE(system) and 

RMSE(system) estimated for the above described ML 

models by using LOOCV approach are reported in Figure 

5.  

 

 
                MSE(system)                        RMSE(system) 
Figure 5. MAE(system) and RMSE(system) of TFR for Case (i), 

with their confidence intervals. For STR4FT, MAE(system)=0.4, 

and RMSE(system)=0.53, have been registered.  

According to the results reported in Figure 5, RF model 

turned out to be the best, as it provides the smallest MAE(), 

RMSE() and confidence interval values. Moreover, almost 

all ML approaches tested in the context of Case (i) could 

improve the STR4FT solution (the reconstruction of the last 

unseen 3500 timestamps). The mean improvement has 

been in the range of delta MAE(system) of 0.22, which is a 

reduction of more than the 50% of the STR4FT error in 

estimating traffic flow. The performance of ML solutions 

in terms of 𝛥𝑅 are listed in Table 1. Also in this case, RF 

turned out to be the best model in reducing the difference 

in all TFR segments with respect to STR4FT solution. 

 

Model 𝛥𝑅 

Bayesian 0.0942 

Adaboost 0.0848 

MLP 0.0676 

ExtraTree 0.0552 

DT 0.0519 

XGboost 0.0467 

RF 0.0435 
Table 1. TFR deviation 𝛥𝑅 according to the different models in 

Case (i).  

In terms of execution time for TFR, we used the test set 



 

 

partition, composed by 3500 timestamps. The results are 

listed in Table 2. The executions have been conducted on 

a GPU board NVIDIA Quadro GV100 with 32GByte Ram, 

which has 5120 CUDA Cores, FP64 perf as 7.4 TFLOPS. 

Therefore, in terms of execution time, RF improved the 

execution time of SRA4TF, providing a speed up of about 

2. A better compromise can consist in the adoption of MLP 

which is not the best solution in terms of error reduction 

(see Table 1), and it provides a speed up of about 16000 

times with respect to the SRA4TF execution time.  

 

Model Test Time (s) 

SRA4TF 3685.15 

RF 1627.30 

XGboost 744.50 

Adaboost 43.66 

DT 19.52 

ExtraTree 18.47 

Bayesian 4.69 

MLP 0.22 
Table 2. Execution times for the TFR performed with SRA4TF 

only, and via ML models for Case (i).  

VI. CODING TEMPORAL INFORMATION: CASE (II) 

A further analysis has been performed to improve the 

precision of the ML phase in terms of system MAE, RMSE. 

In this Case (ii), the model of Case (i) has been enriched by 

adding in inputs different kinds of coding for temporal 

information, while addressing problems related to 

discontinuous input data. This latter problem was not 

addressed in Case (i) which produced results only based on 

input data presence, while the rate of missing in the realistic 

case produced also some sporadic missing in the output. 

The problem can be largely overcome with some 

imputation via predictions or typical time trends [9]. When 

temporal data are adopted in the model, the impact of 

missing data can be much higher and thus has to be 

addressed.     

     Moreover, temporal information has to be encoded in 

features so as to consider data seasonality, which can be 

daily and weekly mainly. To this end, we (i) tagged days as 

festive, pre-festive and working days; and (ii) we added the 

time slot of the day. The added features can be estimated a 

priori by knowing the day conditions and its related time 

slot. To this end, an analysis has been performed to identify 

those classes and make the addition of this information 

easier at each time stamp. In some cases, a weekday in the 

middle of the week may present a traffic flow profile like a 

festive one, for example in the event of national or religious 

festivities. For instance, the days of the 1st November, 24th, 

25th, 26th, 30th and 31st of December, despite being working 

days, have a traffic flow profile that resemble much more a 

festive/pre-festive day according to the clustering, being 

indeed related to Christmas, Christmas Eve and New year 

Eve festivities. The day tag has been assessed automatically 

by using the K-Means unsupervised clustering technique 

with k equal to 3 (the festive, pre-festive, and working 

days). Thus, traffic flow data trends over 24 hours have 

been clustered. Similarity metric for the clustering has been 

the Euclidean distance with the nearest neighbours. As a 

result, days providing similar trends have been grouped 

(see Figure 6).  

 

 
Figure 6. Horizontal clustering identifying the festive, pre-festive, 

and working days: in dark purple the festive days, in dark pink the 

pre-festive days and in yellow the working days.  

Typical trends are reported in Figure 7. We denoted this 

feature as d(t), which is an additional info for each observed 

sensor data. The feature d(t) is defined as the average value 

(cars/20m) estimated over a range of days at a given sensor 

location at time t, thus being a typical time value/trend. 

According to the day specification we have a typical trend 

for festive, pre-festive and working days, respectively, as 

sketched in Figure 7.  

 
Figure 7. Example of trends for the observed traffic flow density 

(cars/20m) in the different clusters, identified as festive, pre-

festive, and working days. 

An analysis over time has been performed likewise on 

traffic flow data. Final choice has been to encode the 

temporal information into hours as additional temporal 

feature h(t) added to the input. The feature h(t) defines 

different time slots where data are performed, thus h(t) can 

be in the range [0-23] and successively normalized to stay 

on [0.0-1.0]. Alternatively, daily hours can be coded in 4 

time slots as typically happening in many transport system 

applications. The adopted partition in 4 time slots has been 

[start, end] as follows: [00:00, 05:59], [06:00, 11:59], 

[12:00, 17:59], [18:00, 23:59]. These slots correspond to a 

quite uniform traffic behavior.  

A. Assessing Results by Comparison) 

Therefore, the model enriched with temporal explicit 

information with h(t) and d(t) assumes the form:  

 

𝑓(𝑶(𝑡), 𝐡(𝐭), 𝐝(𝐭)) → 𝑹(𝑡)     Case(ii) 

 

The above presented temporal information improved both 

LOOCV approach in terms of MAE(system) or 



 

 

RMSE(system), and TFR deviation 𝛥𝑅 with respect to Case 

(i) which does not take into account temporal information. 

Hereafter we refer to 4 different cases. 

CL0 is Case (i) as described in Section V. 

CL1 is the case where the d(t) are 3 classes and h(t) are in 

4 time slots. They are coded together into 3x4=12 

possible values in a unique input data encoded 

together. 

CL2 is the case where d(t) are 3 classes and h(t) are in 24 

time slots. They are separately encoded.  

CL3 is the case where d(t) are 3 classes and h(t) are in 4 

time slots, while they are separately encoded, which 

makes it different from CL1.  

CL4 is the case where d(t) are 3 classes and h(t) are in 48 

time slots. They are separately encoded.  

 

For this reason, Case (ii) has been substantially 

implemented in 4 different encoding cases. As a result, 

temporal information of d(t) and h(t) led to a performance 

improvement for every model. Generally, CL1-CL4 cases 

improved CL0 cases, except for Adaboost model which 

admitted CL3 and CL4 larger than CL0, while CL1 and 

CL2 are better than CL0. The improvement in the 

reconstruction error of real observed traffic flow data has 

been observed in terms of MAE(system) (see Figure 8) for 

almost all  the techniques. The cases passing from CL0 to 

CL4 provide an increment of the complexity of the input 

data. In these conditions Adaboost provided a decrement of 

performance since it is less capable to learn non-linear 

models than the others and it is more sensitive to noise (the 

reduction of time slots reduce the noise). The best results 

have been obtained by RF. 

 

  
Figure 8. Results in terms of MAE(system). For each ML model, 

5 values represent the results for cases CL0-CL4. The last box on 

the right in red depicts the distribution of the error produced by 

SRA4TF.  

Since changes are not easily observable in Figure 8, in 

Figure 9 a differential representation is presented. The 

largest improvement has been obtained by the DT model, 

while a detrimental effect has been observed for the 

Adaboost Model. Taking into account all the different time 

encoding in Case (ii), the best has been CL2. 

 

 
Figure 9. The differences of performances in terms of 

MAE(system) of TFR for Cases (ii) with respect to Case (i) (i.e., 

CL0).  

Thus, best results have been obtained by RF for CL2, which 

takes into account 3 classes clustering and 24 hours coding. 

In Figure 10, distributions of delta MAE of TFR of model 

CL2 with respect to CL0 (case (i)) for the traffic flow 

sensors where the error is assessed. The largest 

improvement has been observed in the reconstruction of the 

observed traffic flow data for sensor METRO740. 

 

 

Figure 10. The delta MAE of TFR for case RF CL2 with respect 

to CL0, Case (i), for all traffic flow sensors.  

In Figure 11, the improvements obtained by considering 

temporal information are reported as distributions of delta 

MAE(system) of the TFR of model CL2 with respect to CL0 

(case (i)) for the different ML models. With a median 

improvement of 0.0129 for MAE, the additional 

information could generate the highest improvement for 

DT model. According to Figure 8, RF CL2 is the best 

solution in terms of MAE(system). 

 

 

  
Figure 11. Comparison of improvements expressed as the 

differences of MAE(system) obtained for TFR estimation by using 

different ML models for case CL2 (with temporal information) 

with respect to CL0 (without temporal information). 



 

 

In Figure 12, TFR deviation 𝛥𝑅  obtained by CL2 with 

respect to SRA4TF method is reported. Almost all ML 

models provided marginal changes. 

 

  
Figure 12. Changes in terms of 𝛥𝑅 for Case(i), CL0 and CL2 

(case (ii)). The additional information has slightly changed the 

related variation in terms of 𝛥𝑅. 

 

Finally, according to Figure 8, MAE(system) obtained by 

the data driven models with respect to SRA4TF has 

generally improved the estimation precision. More 

precisely, RF model, according to CL2 configuration, has 

provided a MAE(system) of 0.16, against the value of 0.4 of 

SRA4TF. The time needed for the LOOCV computation by 

data-driven models is lower if compared to SRA4TF. 

Therefore, the goal of both improving accuracy of traffic 

flow reconstruction and providing faster execution times 

has been achieved.  

As a remark, we can finally assert that the speed up 

obtained by RF in terms of execution time is lower than 

SRA4TF, which is one of the faster estimators in literature 

[32]. On the other hand, a good compromise in term of 

performance and speed-up could be MLP with a speed up 

of 16000 with respect to the SRA4TF execution time and a 

precision comparable to the one of RF.  

VII. CONCLUSIONS 

In this work, a new architecture for computing traffic 
flow reconstructions from sensors data has been presented. 
The solution is based on a hybrid architecture combining 
model and data driven approaches. It starts from a model 
driven SRA4TF to compute dense traffic flow data in the 
road network, while any other estimators could be used for 
the same purpose. Machine learning models have been used 
to improve dense traffic flow data resulting from SRA4TF. 
The paper presented and compared various solutions for 
machine learning models. This comparison allowed us to 
identify the best possible solution based on RF, Random 
Forest. The current solution has improved results in terms 
of: (a) precision of the TFR as MAE(system) of more than 
0.2, (b) speed up the computational time needed for TFR 
estimation, thus allowing the computation to be more 
sustainable on large networks. Our outcomes did 
demonstrate that the integration of model driven, and data 
driven is possible. Several ML approaches have been used, 
and results have proven that many of them can be profitably 
used to improve precision and speed-up. As a final remark, 
the approach proposed for improving the computed TFR 
could be applied to any kind of traffic flow estimation 
models, no matter which way they are computed. 
Furthermore, both approach and architecture could be also 
used to improve the results produced by other PDE 
resolutions. This could be done with finite element 

approaches, which are always very time consuming. On this 
regard several applications in the fluid dynamic and 
hydraulic fields can be easily foreseen. 
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