
From the Open Street Map to

Km4City street graph: a process outline
Version 0.3

Date: 21-01-2018

Ref: info@disit.org

Up to April 2017, the Km4City street graph data (toponyms, street numbers, Public Administration
boundaries, traffic restrictions, and so on) was gathered from the Tuscany Region through the employment
of appropriate ETL processes that basically imported the Tuscany Region data to appropriate MySQL tables,
and translated it to an appropriate set of RDF triples through appropriate executions of an appropriately
configured Karma1. The intentional repetition of the appropriate adjective is aimed at clarifying that even if
that process is out of the scope of this document and it is therefore relegated to just a bunch of lines,
nothing has been easy within it, nor its design, neither its implementation.

From April 2017 onward, a new need has emerged: the coverage of the Km4City project had to be extended
outside of the boundaries of the Tuscany Region. Therefore, other source data had to be identified, and
corresponding RDF triples had to be generated.

The gathering of the data from the Public Administration through requests to the Administrations other
than the Tuscany Region, would have implied to design and develop a new ETL ingestion for each new data
source. Also, bureaucratic matters would have to be faced, which was a threaten both for the time of
release and for the availability and affordability of the necessary data over the years.

All such issues have been overcome by adopting the Open Street Map2 as a source of data. Open Street
Map (briefly, OSM) is an open source project aimed at creating maps that could include street graphs, street
numbers, traffic restrictions, boundaries, points of interest, and so on. The Open Street Map data come
from a wide community of voluntaries spread all over the World, weakly coordinated through the OSM
Wiki3.

This way, just one ingestion process had to be designed and implemented, being that the Open Street Map
covers the Globe in its entirety. Also, the wide community of the Open Street Map contributors is a
guarantee about the availability of updated data over the time. Also, the open license under which the OSM
maps are distributed is a guarantee about the affordability of such data. Finally, the Open Street Map comes
with a set of tools, the most relevant of those for the purposes of the ingestion and update of the Open
Street Map data is the Osmosis4.

In Figure 1, an outline is provided of the process through which the Open Street Map data is leveraged for
populating the Km4City Knowledge Base.

Firstly, an appropriate Open Street Map file has to be downloaded. Different formats are available, and the
opportunity of getting just an extract instead of the complete Planet map is also provided by some websites
such as Geofabrik5. Then, a relational database with an appropriate schema has to be created. A set of SQL
scripts is provided by Osmosis for the purpose, that address two alternative schemas. Some of those install
optional functionalities, and can be skipped. Appropriate decisions must be taken depending of the
purposes of the data ingestion. Then, the relational database can be filled reading from the OSM file

1
 http://usc-isi-i2.github.io/karma/

2
 https://www.openstreetmap.org/

3
 https://wiki.openstreetmap.org/wiki/Main_Page

4
 http://wiki.openstreetmap.org/wiki/Osmosis

5
 https://www.geofabrik.de/

mailto:info@disit.org

(Osmosis suits for the purpose), and an appropriate SQL script that we at DISIT have developed can be
launched that creates indexed tables that will be leveraged in the following and adds appropriate indexes to
some of the tables that have been filled through the data import from Open Street Map. Once that the
relational database has been filled, the RDF triples can be generated. The triplification of the street graph is
performed in two steps: appropriate SQL scripts that we at DISIT have developed are executed on the same
database that has been filled with Open Street Map data, and a Sparqlify dump is then launched that reads
from the relational database and writes the RDF triples conforming to an appropriate configuration file that
we at DISIT have shaped, namely a SML (Sparqlification Mapping Language) file. This way, an increased
efficiency is achieved: the SQL queries included within the SML configuration file become long simpler, and
their optimization become long faster. At last, the new triples can be loaded to Virtuoso, the NoSQL DBMS
in use within the Km4City project, and the process ends. Periodically, the process can be repeated: an OSM
file that contains the map updates (namely, an OSC file) can be downloaded, the updates can be applied to
the RDB through Osmosis, the efficient SQL scripts aimed at preparing the data for the triplification can be
executed, the Sparqlify dump can be launched, and the new triples can be uploaded.

Figure 1 The OSM data ingestion process

In the following, each of the outlined steps is discussed in greater detail.

As for the acquisition of the maps from Open Street Map, it must be said that the Open Street Map data is
distributed in several different formats6. Indeed, the same OSM map could be found represented in as many
as seven different ways. As a result, a decision about the source data format had to be taken. Among the
OSM file formats, two are compressed not human-readable file formats thought to be used with specific
software tools, and the others are the OSM XML (the basic OSM format), the Overpass JSON (a JSON literal
translation of the OSM XML), and the Level0L (a plain text representation generated by the Level0 map
editor). In any case, none of those could be directly used for generating RDF triples, for a wide set of
motivations. Firstly, the mapping of the Open Street Map data model to the Km4City data model is very
intricated, and good chances were that a very hard to maintain mapping tool could result from an attempt
of performing a one-step implementation of such mapping. Also, due to the complexity of the mapping, a
sequential access to the OSM source file was not a choice, but the OSM files are so large that loading them
in memory for enabling a random access would have easily lead to memory issues. Also, geospatial
functions (such as determining the boundary where a point falls choosing among thousands of candidate
boundaries, determining the nearest line given an arbitrary point choosing among millions of candidate
lines, and many other) are needed for a flexible and effective data import, but ready-to-use geospatial
functions are not available that efficiently spread across a whole XML, JSON or plain text files. Also, an
official DTD schema is not available for the OSM XML. Therefore, no assumption can be made while parsing
it. As a result, nor a validation neither a safe navigation is possible over the original OSM XML format, and
the same applies to the JSON and plain text files derived from it, which leads to an increased complexity of
the import tool, where the absence or the corruption of the data would have to be handled. All this has led
to the choice of making a preliminary import to a relational database, and using the relational database as a
source, instead of the OSM files directly. The RDBMS that Open Street Map recommends7 is Postgresql8,
also considering its very useful PostGIS9 extension (Errore. L'origine riferimento non è stata trovata.). As a
result, it has been our choice. Osmosis is suitable for filling a relational database reading from an OSM file10,
but the destination database must exist and it is required to have an appropriate schema11. Osmosis
supports two different schemas, and provides appropriate sets of scripts for building each of them. Within
each set, optional scripts are included, aimed at supporting actions, bboxes, and linestrings.

6
 http://wiki.openstreetmap.org/wiki/OSM_file_formats

7
 http://wiki.openstreetmap.org/wiki/Databases_and_data_access_APIs#Choice_of_DBMS

8
 https://www.postgresql.org/

9
 http://postgis.net/

10
 https://wiki.openstreetmap.org/wiki/Osmosis/Detailed_Usage_0.41#--write-pgsimp_.28--ws.29

11
 https://wiki.openstreetmap.org/wiki/Osmosis/PostGIS_Setup

Figure 2 The Osmosis scripts for generating the two supported RDB schemas

If the snapshot schema is chosen, the OSM tags, that is the metadata that apply to the OSM relations, ways,
and nodes, where most of the information that is necessary for a mapping implementation is wrapped, are
concatenated in plain text fields. So, an effective indexing cannot be performed over them, and a (time and
resource consuming) parsing is needed for identifying and extracting the key-value pairs. As a result, the
older simple12 RDB schema has been preferred, and the SQL scripts wrapped within the red box in Figure 2
are executed for generating such a schema.

After having populated the RDB with the OSM data, the initialization script that we at DISIT have developed
can be launched. The initialization script typically need to be launched once per RDB, immediately after that
the first filling of the RDB with OSM data has been completed. Further executions of the script are indeed
necessary in the only case in which a modification would occur to the boundaries of one or more of the
districts, municipalities, provinces and regions that have been imported from the Open Street Map. The
initialization script is indeed mainly aimed at performing long running operations on the boundaries
(districts, municipalities, provinces, regions) that can be found within the imported Open Street Map, and at
defining appropriate indexes both over the newly created tables and over some in particular of the tables
and fields that have been introduced and filled by Osmosis during the generation of the schema and the
subsequent data import. This way, a remarkable speeding has been achieved of several queries that are
executed at each triplification process, such as the ones where the Municipality within which a point falls
has to be retrieved, and many other. A fragment of the initialization script is provided in Figure 3.

12

 http://wiki.openstreetmap.org/wiki/Osmosis/Detailed_Usage_0.45#PostGIS_Tasks_.28Simple_Schema.29

Figure 3 A fragment of the initialization script

Once that the initialization script has been launched, the first triplification process can be started. At now,
each triplification process is performed through the execution of a shell script (Figure 4) that we at DISIT
have developed, which automatically performs all the necessary operations, from the preparation of the
data on the relational database, to the generation of a text file that contains the RDF triples, and the
cleaning of such file for that it could be successfully uploaded to Virtuoso. The uploading of the RDF triples
to Virtuoso is the only step that is not included within the shell script. This way, some further checks over
the generated RDF triples can be performed before their uploading, and possible unexpected anomalies can
be detected. Digging into the shell script, the psql command is employed for launching SQL scripts and
queries on Postgresql. A database always must be specified. At now, a separated database for each country
covered by the project has been generated. The pgsimple_fin, is the database where the Open Street Map
of Finland has been uploaded. The script.sql is the preparation script, where an appropriate set of tables is
created. Before being created, each table is dropped. In reason of that, all the privileges that had been set
on the table go lost. So, a query is needed after that the preparation script execution has completed, for
granting the needed privileges to the pgsimple_reader_fin user. Then, the RDF triples are generated
through the execution of a Sparqlify dump. The necessary parameters, as it can be seen, are the SML
configuration file, and the source relational database host, database, username, and password (obfuscated).
Finally, the heading rows are stripped away, the duplicated rows are also stripped away, and the resulting
file is typically stored with a filename that matches the name of the province or municipality to which it
refers, followed by the n3 extension which is the expected extension for the RDF triples files.

Figure 4 A sample shell script for the triplification of the Helsinki street graph

Digging into the SQL script aimed at preparing the triplification, three sections can be identified within it.

The first section, is the configuration sections. It is here that the boundaries of the triplification are set. In

the sample fragment provided in Figure 6, as an example, it is stated that the boundary of this triplification

is the Open Street Map relation whose OSM ID is equal to 34914 (Figure 5). If it was needed, a set of

identifiers could be provided. This way, the subsequent triplification would have been extended over all the

identified areas. Expectedly, for that the triples could be generated, such areas had to be confined within

the boundaries of the Finland, being that the relational database that we have adopted as a source for our

triplification has been filled with the only data from the Finland Open Street Map.

Figure 5 The city of Helsinki on Open Street Map, OSM ID 34914

Also remarkably, the RDF graph can be specified in the configuration section of the preparation script. In

this case, we have not cared about it, because we generate RDF triples, where the graph does not appear. It

should be noted that it is a choice. Indeed, when a Sparqlify dump is launched, appropriate options can be

set for that it produces RDF quads, instead of RDF triples. In this case, the RDF graph appears on each row

of the output file, and in this case, this setting about the RDF graph come to be relevant.

Finally, a configuration can be set that is not relevant for the city of Helsinki, but that could be relevant for

the city of Florence. Indeed, it can be chosen if the street numbers have to be obtained from the Open

Street Map, or from the Tuscany Region, which also provides them. If the Tuscany Region is chosen, the

RDF triples that represent the street numbers are not included in the output file, as they are expected to be

generated and uploaded separately, through the leveraging of appropriate ETL processes. For the city of

Helsinki, we have obviously chosen to leverage the street numbers that are included within the Helsinki

Open Street Map.

The second section of the SQL script aimed at preparing the triplification, is where the support tables are

created. The support tables, are tables that are leveraged for preparation of the data of several properties

of several concepts. For this reason, they are grouped at the beginning of the SQL script, without a clear

indication of the concept and property to which they are related.

Figure 6 The configuration section of the SQL script aimed at preparing the data for the triplification

The third section of the SQL script aimed at preparing the triplification, is where the specific tables aimed

each at containing the data that is needed for producing the RDF triples of a specific property of a specific

concept can be found. In Figure 7 a fragment where some tables aimed at containing the data of some

properties of the concept Province, is provided. As it can be seen, the first table is aimed at containing the

URIs of the instances that have to be produced of the concept Province, and its target list just includes the

RDF graph where the triples has to be included (that will be anyway ignored by the Sparqlify), and a field

named id where the URI of the instance is contained. Notably, the next table, aimed at preparing the data

for the property identifier, is identical to the first. Indeed, for all concepts related to the street graph, the

property identifier is a string whose value is the URI of the instance. Later, in the SML, the two tables will be

treated differently: the first will be accessed for producing triples that conform to the template <uri>

rdf:type km4c:Province, while the second will be accessed for producing triples that conform to the

template <uri> dct:identifier “uri”. It is true that the same table could be used two times in different ways,

so no need was of creating two identical tables, but through the generation of a separated table for each

different property of each different concept, we keep the SQL scripts, and the SML scripts, easy to read, and

consequently easy to maintain.

In the third table of the fragment, the necessary data for the generation of the RDF triples for the property

name of the concept Province is wrapped in a dedicated table, the ProvinceName table. All what is needed

for producing of the RDF triples for the Province name property, is the URI of the subject, and the filler

value. Indeed, the target list of the table simply contains the field id (the URI), the field p_name (the filler

string), and the RDF graph URI.

Figure 7 A sample fragment from the third section of the SQL script aimed at preparing the triplification

Digging into the SML script, where the SQL and the SPARQL query are mixed for instructing Sparqlify about

what RDF triples have to be generated from which RDB source data, we now analyze the fragment provided

in Figure …, where the generation of some RDF triples for the concept Province is configured.

In the first fragment, outlined in green, we are instructing the Sparqlify as follows. Through the From

directive, we are indicating that the necessary data must be read from the table ProvinceURI. Remarkably,

it is the simplest possible SQL query: get all rows and all fields from a specified table. It has been made

possible, because the complexity of the mapping is wrapped within the SQL script that prepares the

triplification, and it is a great advantage in terms of efficiency, because the simpler is the query, the faster is

its optimization. Through the With directive, we define a set of variables (at the left side of the equality)

leveraging the values that are contained within the RDB table. At the right side of the equality indeed, the

names of the fields from the RDB table appear, together with native SML functions through which some

basic operations such as specifying how a string value has to be interpreted (if it has to be considered a

simple string, if it has to be considered an instance URI) or performing a concatenation can be executed.

For each row of the RDB table, the properties are set, and they are employed as it is specified in the

Construct directive. In this case, the Constraint directive instructs the Sparqlify to generate just one RDF

triple for each row that can be found in the RDB table, which has to be put in a RDF graph whose URI can be

found in the variable graph. The triple that has to be generated must have: (1) the value of the variable s,

which is a URI, as subject; (2) the rdf:type as property URI (the reserved word a stands indeed for that); (3)

the URI that identifies the concept Province as a filler. The leading Create View directive should be

considered a simple label for this configuration fragment.

In the second fragment, outlined in yellow, the RDB table ProvinceIdentifier is read, which is identical to the

ProvinceURI one. The id field is employed in two different ways: it is employed for setting the variable

identifier equal to a string whose content is the URI, and it is employed for setting the variable s equal to a

URI. In the Construct directive, the variable s bears the role of the subject of the RDF triple that has to be

generated, while the variable identifier is the filler. The property URI is statically set equal to dct:identifier.

Figure 8 A sample fragment from the SML file where the production of some triples for the concept Province is configured

Finally, in Figure 9 the first lines of the triples file for the city of Helsinki are showed. The file that is showed

in the fragment has already been cleaned. Nevertheless, it contains over 10 millions triples. As it can be

seen, the rows are incidentally ordered in an alphabetical manner, as a consequence of the sorting that has

been applied as a preliminary step for the removal of the duplicate rows. As expected, each row is made up

by three parts, separated through a space character: the subject (the angled parenthesis denote that is has

to be interpreted as a URI), the property, and the filler. As expected, the graph URI does not appear.

Figure 9 The first few lines from the triples file for the city of Helsinki

Now that the overall process that leads to the generation of the RDF triples has been outlined, an eye can

be put at the Open Street Map and Km4City data models mapping, that can be considered the specification

for the SQL scripts and configurations that we have introduced above.

For a full understanding of the data models mapping, a brief overview about how the street graph is
represented within the OSM XML files is necessary. In Open Street Map, all Public Administrations (PA) are
represented through relation elements that have a set of tag child elements that describe the level and the
name of the PA, and a set of member child elements that describe the boundary of the PA. It should be
noted that not all relation elements represent a PA: a deep look over the relation child elements is
necessary for understanding what it represents. In OSM, roads are represented through way elements.
Precisely, a road can be represented through a single way element, or through a set of way elements
grouped within a relation element. Each way element has a set of nd child elements, each of which
addresses a node element, so outlining the path of the way. It should be noted that not all the way
elements represent a road or a segment of road. Indeed, a way just represents a line on the map. A deep
look over the way child elements, and over the relation elements that includes the way, is mandatory for
understanding what a way represents. In OSM, the street numbers and the related entrances are mainly
represented through node elements. Again, not all node elements represent a street number. Indeed, a
node element merely represents a point on the map. A deep look over the node child elements is requested
for understanding if it really represents a street number, and for efficiently and effectively determining the
road where the street number is located. In some cases, a look at the relation elements that include the
node is even necessary for identifying the road where the street number is located. Indeed, the node
elements that represent the street numbers, rarely coincide with the node elements that outline the path
of the road where the same street numbers are located. In OSM, the lanes are represented through tag

elements whose key include the lanes word, and that are children of OSM way elements that represent
roads or parts of road where such lanes are located. A deep parsing of both the key and the value of such
tags is necessary for understanding what a specific tag exactly says about the lanes. Lastly, traffic
restrictions are spread everywhere, are expressive enough for representing any sort of prohibition and
exception, and can be represented differently in different parts of the OSM map.

Within Km4City, each Public Administration is represented as an instance of the class Pa (Figure 10).

A new instance of the class Pa is generated for every OSM relation tagged with type equals to boundary and
boundary equals to administrative. A third tag, admin_level, is used for determining the tier of the PA, and
consequently the specific child class that must be instantiated: if it is set to 4, a Region is generated, if it is
set to 6 a Province is generated, and if it is set to 8 a Municipality is generated. At each instance of Pa is
assigned an URI that includes the id of the OSM relation from which the instance is generated. For each Pa,
three properties are set: the identifier (which globally identifies the instance and includes the id of the OSM
relation from which the Pa is created), the name (the official name, set equal to the name tag of the
relation), and alternative (the abbreviation, set equal to the short_name tag of the relation). Also, the
property hasProvince is set for each region, the properties hasMunicipality and isInRegion are set for each
province, and the property isInProvince is set for each municipality, for linking the PAs with each other. The
PAs are linked with each other on the basis of their boundaries, that are outlined by the OSM way elements
that are included within each relation that represents a Public Administration.

The class Hamlet (Figure 11) represents the lowest tiers of sub-national division, below the municipality.
Within a city, the instances of Hamlet often represent its districts. For each instance of Hamlet, five
properties are set. The property identifier globally identifies the instance. The property name provides the
name of the hamlet or district. The property inMunicipalityOf indicates the municipality where the hamlet
or district is located. The properties lat and long provide the indicative position of the hamlet or district.

Figure 10 An outline of the Km4City Pa class

A new instance of Hamlet is generated for every OSM relation tagged with type equal to boundary,
boundary equal to administrative, and admin_level greater than 8. Also, a new instance is generated for
every OSM way tagged with boundary equal to administrative and with admin_level greater than 8. Lastly, a
new instance is generated for every OSM node tagged with place equal to suburb. The identifier includes
the id of the OSM element from which the instance is generated. The name is set equal to the value of the
name tag of the element from which the Hamlet instance is generated. The inMunicipalityOf is set equal to
the municipality where the hamlet or district is located, identified by looking at their boundaries. The lat
and long properties are set equal to the respective attributes of the OSM node element from which the
Hamlet instance is generated, or computing the centroid of the boundary if the Hamlet instance is
generated from an OSM way or relation.

The class Road (Figure 12) represents every type of road. For each instance of Road, eight properties are
set. The property identifier globally identifies the instance. The property roadType provides the street type
designation13, where applicable. The property roadName provides the distinguishing name of the road,
obtained removing the street type designation from the full name of the road. The property extendName
provides the full name of the road. The property alternative provides an alternative naming for the road,
where applicable. The property containsElement indicates one of the road segments that make up the road
(if the road is composed by several segments, several instances of the property are generated). The
property inMunicipalityOf indicates the municipality where the road is located, and the property
inHamletOf similarly indicates the hamlet or district where the road is located (when applicable).

A new instance of Road is generated when one of the following is found within OSM:

1. a way element tagged with highway set equal to any value except for proposed, and not
referenced by any relation that represents a road;

2. a relation tagged with type equal to route, route equal to road (or not instantiated), and network
different from e-road, and that also includes at least one way tagged with highway set to any value
except for proposed.

In the first case, the properties of the Road instance are set as follows:

• the identifier includes the id of the way from which the instance is created;

• the roadType, roadName, and extendName are set parsing the name tag of the OSM way element.
Precisely, the value of the tag is written as is on the property extendName, while the roadType and
the roadName are set searching the extendName for one of the allowed road types, kept in a
separate list which varies from country to country. If a match occurs, the matched road type is
written into the roadType, and the remaining is written into the roadName. Otherwise, the
roadType is not instantiated, and the roadName is set equal to the extendName;

• the alternative is set equal to the alt_name tag of the OSM way, if available;

13

 https://en.wikipedia.org/wiki/Street_or_road_name#Street_type_designations

Figure 11 An outline of the Km4City Hamlet class

• for the identification, instantiation and linking of the segments of road, it should be noted that each
OSM way represents, in the most general case, a complex path outlined by a set of OSM node
elements each representing a point on the map. A new RoadElement instance is generated for each
linear segment outlined by two consecutive nodes, and a new containsElement property is
instantiated on the Road for linking the newly generated road element to the road where it is
located;

• the properties isInMunicipality and the isInHamlet are set equal to the instances of Municipality
and Hamlet that represent the municipality and the hamlet (or district) where the road is located. If
a road falls within no district, the isInHamlet property is not instantiated. A road is considered to fall
within a municipality, hamlet or district, if at least one of the nodes that outline the path of the

road falls within the boundary of the municipality, hamlet or district.

In the second case, the properties of the Road are set as follows:

• the identifier includes the id of the relation from which the instance is created;

• the roadType, roadName, and extendName are set parsing the name tag of the relation;

• the alternative is set equal to the value of the alt_name tag of the relation;

• for each linear segment outlined by two consecutive nodes within each way member of the
relation, a new instance of the class RoadElement is generated;

• the isInMunicipality and the isInHamlet properties are set so that if at least one node of at least one
way among the ones included in the relation, falls within the boundary of the municipality, hamlet
or district, then the road is considered to belong to the municipality, hamlet or district.

The class RoadElement (Figure 13) represents a segment of a road. A new RoadElement is generated for

Figure 12 An outline of the Km4City Road class

each linear segment of each OSM way that represents a road or a segment of road.

The main properties set on a RoadElement are described below. The identifier is composed by
concatenating the OSM way id with the position of the segment in the OSM way. The properties
startsAtNode, endsAtNode, and route provide basic information about the segment of road, indicating the
two extremities of the segment of road, and providing a geometric representation for the segment. They

are set looking at the OSM node elements that outline the path of the OSM way.

The property elementType provides an information about the location and usage of the segment of road.
Precisely, it says if the segment of road is located within a parking, a link, a roundabout, a crossroad, an
highway barrier, a railway level crossing, a pedestrian area, a road reserved for particular usages (bus stop,
rest area, emergency), or if it is a generic segment of road. This property is primarily set on the basis of the
highway tag of the OSM way, together with other tags like service, amenity, junction, barrier, area, railway,
lanes. The property composition tells if the segment of road is a dual carriage one. It is set to dual carriage if
the segment of road belongs to a type of road that always is a dual carriage road for law, or if the way is
within a relation tagged with type equal to dual_carriageway. The property elemLocation provides an
information about the elevation of the segment of road. Precisely, it says whether the segment of road is
located in a tunnel, bridge, link, a union of them, or none of them. The property is set on the basis of the

Figure 13 An outline of the Km4City RoadElement class

bridge, tunnel, and highway tags of the way, and on the basis of the type tag of the relation in those cases
where the way is contained within a relation that represents a road. The property length provides the
length of the segment of road, which is computed and set equal to the distance between the start and the
end node of the segment of road. The property width provides the width of the segment of road. It is set
equal to the width or est_width tag of the way, if available. Otherwise, the property is not instantiated. The
property operatingStatus provides an information about the status of the segment of road. Precisely, it says
whether the segment of road is under construction, disused, or operating. The property is set looking at the
tags highway and disused of the OSM way. The property highwayType provides further information about
the type of the road to which the segment of road belongs. It is set equal to the value of the tag highway of
the way. The properties managingAuthority (and inHamletOf) are set equal to the municipality (and the
hamlet/district, if applicable) within which the segment of road falls. They are set searching for the
municipality (or the hamlet/district) such that at least one of the extremities of the segment of road falls
within the boundary of the municipality (or hamlet/district).

Each street number is represented in Km4City through a couple of instances: an instance of the class
StreetNumber (Figure 14), and an instance of the class Entry (Errore. L'origine riferimento non è stata
trovata.), linked through the property hasExternalAccess defined for the StreetNumber.

A new instance of StreetNumber is generated for every OSM node tagged with a complete address spread
across three different tags: housenumber, street, city. Also, a new StreetNumber is created for every OSM
node that is tagged with a housenumber and that is contained within a relation tagged with type equal to
associatedStreet. Indeed, such relations exist in OSM for linking the street numbers to the road or segment
of road where they are located. Lastly, a new StreetNumber is created for every node that is tagged with a
housenumber and that belongs to the path of a way that represents a road or a segment of road.

Figure 14 An outline of the Km4City StreetNumber class

Figure 15 An outline of the Km4City Entry class

The following properties are set for every instance of the class StreetNumber. The identifier globally
identifies the instance, and it includes the OSM node id. The property belongToRoad indicates the road
where the street number is located. The property classCode is necessary for three Italian cities (Florence,
Genoa, and Savona), where two completely disjoint numbering systems coexist: the red numbers, and the
black numbers. So, a property is necessary for discriminating between the two. The property is only set for
the street numbers located in one of these cities, by parsing the housenumber tag value. The properties
number, exponent, extendNumber provide the numeric part, the literal part, and the whole street number.
They are set parsing the housenumber. For each instance of Entry, the following properties are set. The
identifier globally identifies the entry, and it contains the OSM node id. The properties lat and long provide
the exact position of the entry on the map. The property porteCochere tells if the motor vehicles can transit
through the entry. If motorcar equal to yes or motorcycle equal to yes on the node that represents the
entry, they can. The property placedInElement is set equal to the nearest of the segments or road that
compose the road where the entry is located.

The class Lanes represents a set of lanes drawn on the asphalt of a road. For each instance of Lanes, the
property where indicates the road where the lanes are drawn, and the property lanesCount provides a
count for the lanes, distinguishing those that are reserved to specific categories of vehicles from the others.

Indeed, the property lanesCount is set equal to an instance of LanesCount (Figure 17), and each instance of
LanesCount has a property undesignated which provides the count of the lanes that can be traversed by all
the types of vehicle, and additional properties which provide the count of the lanes that are reserved to

Figure 16 An outline of the Km4City Lanes class

specific categories of vehicles.

Figure 17 An outline of the Km4City LanesCount class

When specific restrictions apply to at least one of the lanes, the property lanesDetails is also instantiated,
and it is set equal to a Seq of Lane (Figure 18) instances, that represent each the restrictions that apply to
the specific lane, if any. The lanes are added to the Seq in left-to-right order as viewed in their driving
direction. For each instance of the class Lane, two properties are always set: the where, that is set equal to
the instance of Lanes that represents the set of lanes to which it belongs, and the property position that is
set equal to the position that the lane occupies within the set. Also, the property turn is instantiated if a
restriction applies to the lane about the direction that the vehicles will have to take once they will reach the
next crossroad. Also, the property restrictions is instantiated if other types of restriction apply to the lane,
and is set equal to a Bag of Restriction instances, each representing a specific restriction that applies to the
lane.

In OSM, all the information about the lanes is wrapped within tags whose key includes the word lanes,
together with other optional specifications. In greater detail, if the key only contains the word lanes, the
total count of the lanes is provided. Instead, if the key of an OSM lanes tag also includes a direction
(forward or backward), it is intended that the tag only applies to the lanes that are traversed in the
specified direction. In brackets, the forward direction is the positive direction of the OSM way where the
lanes are drawn, and the positive direction of a OSM way goes from the first listed toward the last listed of
the child OSM node elements that outline the path of the way. As an example, it could happen to find the
tag lanes:forward and the tag lanes:backward applied to the same way, each set to an integer value. Well,
they provide the count of the lanes, separately for the two directions. Also, within an OSM lanes tag key, a
category of vehicles could be specified. As an example, we could find an OSM tag with the following key:

Figure 18 An outline of the Km4City Lane class

lanes:forward:bus. In this case, the value of the tag would be the count of the lanes that go forward and
that are reserved to the buses. It should be noted here, that if the key of an OSM lanes tag includes
something other than a direction and a category of vehicles, it is intended that it does not provide a count
of the lanes. In greater detail, if the key of an OSM lanes tag includes the turn word, it is intended that the
value of the tag provides an information about the direction that the vehicles will have to take once they
will reach the next crossroad. Characters of pipe are used within the value of the tag, for separating the
information related to the different lanes, provided from the left as viewed in the driving direction of the
lanes. Similarly, an OSM tag could have its key equals to hgv:access:lanes and the value set to no|no|yes.
Well, it would mean that high weight vehicles are allowed on the rightmost lane only. It should be noted
here that abbreviated keys are sometimes used, especially for OSM tags that express access restrictions. As
an example, it could happen to find the above key abbreviated as hgv:lanes, with the tag value unaltered.
So, it is not sure that the OSM tags whose key includes the word lanes together with at most a direction and
a category of vehicles, always provide a count of the lanes. A combined parsing of both the key and the
value of OSM lanes tags is needed for a correct interpretation.

The class Restriction represents a generic traffic restriction, and it is specialized by the following three
classes: TurnRestriction, AccessRestriction and MaxMinRestriction. The class TurnRestriction represents a
restriction concerning the permitted maneuvers at a crossroad.

Three properties are always set for a TurnRestriction (Figure 19):

• where, which is set to the road of origin;

• toward, which is set to the road of destination;

• restriction, which describes the restriction.

Figure 19 An outline of the Km4City TurnRestriction class

Also, if the restriction only applies for a limited period, one or more of the following properties could be set:
day_on, hour_on, day_off, hour_off. Also, if the restriction does not apply to a category of vehicles, the
property except is set.

A new instance of TurnRestriction is created for every OSM relation on which a tag with key type and value
restriction can be found. The property where is set looking at the OSM way that is included in the relation
with member_role equal to from. Similarly, the property toward is set looking at the OSM way that is
included in the relation with member_role equal to to. Lastly, the property restriction is set equal to the
value of the tag restriction (always applied to the turn restriction relations) which indicates whether the
maneuver is mandatory or forbidden. Also, if one or more of the tags day_on, hour_on, day_off, hour_off,
except are applied to the relation, corresponding properties are set on the TurnRestriction.

The class AccessRestriction (Figure 20) represents the prohibition of accessing a road or a segment of road,
or the prohibition of traversing a road or a segment of road in a specific direction. The restriction can apply
to a specific category of vehicles or to all the vehicles, and can be subject to a number of conditions. Two
properties are always set for an instance of AccessRestriction:

• where, which indicates the road where the restriction applies;

• access, which describes the restriction, which could be a prohibition or a permission for specific
categories of vehicles to traverse the road (which implies a prohibition for all of the others).

The property who is set when the restriction only applies to a specific category of vehicles. Also, the
property direction is set when the restriction only applies to one of the two traffic directions. Lastly, the
property condition is set when the restriction is subject to one or more conditions.

In OSM, most of the information about the traffic restrictions is contained within tags whose key includes
the word access or oneway. Anyway, it could happen to find day_on, hour_on, day_off, hour_off tags
applied to the same OSM element to which the access tag is applied. They indicate that the restriction is
temporary, and they are taken into consideration for properly setting the property condition. For a complete
understanding of what an access tag indicates, the tag key needs to be parsed. Indeed, if the restriction only
applies to a specific traffic direction and/or if the restriction only applies to a specific category of vehicles, it
is specified within the key of the tag. In truth, a combined parsing of both the key and the value of the tag is
even necessary for a correct interpretation of the restriction, because the word access is sometimes
suppressed within the key of the tag, especially when the restriction only applies to a specific category of
vehicles. When the restriction applies to a road, the access property is set equal to the value of the access

Figure 20 An outline of the Km4City AccessRestriction class

tag. Instead, when the restriction applies to a set of lanes, which is denoted by the word lanes included
within the key of the OSM access tag, the value of the access tag is parsed, a new instance of
AccessRestriction is generated for each of the lanes, and the access property is properly set for each of the
lanes. Also, the key of an access tag could contain the indication :conditional, and the value of the access tag
could include the symbol @ followed by the condition that must be met so that the restriction could apply.
In this case, the property condition is consequently set. It might even happen that the value of the access
tag contains a set of different values, each associated with a specific condition. In this case, the value of the
access tag is parsed, and a set of instances of AccessRestriction is generated, one for each of the
value/condition pairs. When a oneway tag is applied to an OSM element, a restriction applies to all the
vehicles about the direction that the traffic must follow. If the value of the tag is set to 1, it means that the
positive direction only is allowed, while if the value is set to -1, it means that the negative direction only is
allowed. The positive direction of a OSM way goes from the first listed toward the last listed of the child
node elements that outline the path of the way.

The class MaxMinRestriction mostly represents restrictions about the maximum and minimum speed, and
the size or the weight of the vehicles. Three properties are always set for each instance of the
MaxMinRestriction class:

• where, which indicates the road or segment of road where the restriction applies;

• what, which describes the type of restriction (as an example, maxspeed);

• limit, which provides the imposed limitation (as an example, 50 km/h).

The property condition is set if the restriction only applies under specific conditions. Also, the property who
is set if the restriction only applies to a specific category of vehicles. A new instance of the
MaxMinRestriction class is generated for each OSM tag whose key includes one of the following:
maxweight, maxaxleload, maxheight, maxwidth, maxlength, maxdraught, maxspeed, minspeed, maxstay.

Figure 21 An outline of the Km4City MaxMinRestriction class

