

Architetture Parallele (Class. Flynn)

- SISD: Single instruction stream, single data stream
 - E.g.: un computer monoprocessore, monocore
- **SIMD**: Single instruction stream, multiple data stream
 - E.g.: le stesse istruzioni su tutti I nodi computazionali allo stesso tempo, ma lavorando su dati diversi, per esempio GPU su immagini
- **MISD**: Multiple instruction stream, single data stream
 - E.g.: ogni nodo puo' eseguire processi indipendenti ma sullo stesso stream di dati, un risultato singolo (poco realistico)
- MIMD: Multiple instruction stream, multiple data stream
 - E.g.: ogni nodo puo' eseguire processi indipendenti su dati diversi
 - Tipicamente la soluzione piu' utilizzata per il sistemi general purpose, cloud, etc.

Classificazione

- **SISD**: Single instruction stream, single data stream
 - Von Neumann
- **SIMD**: Single instruction stream, multiple data stream
 - Vector processor, Array processor
- MISD: Multiple instruction stream, single data stream
 - poco realistico

MIMD: Multiple instruction stream, multiple data stream

MultiProcessore

- Parallelismo interno al calcolatore
- Memoria condivisa, variabili condivise
- Sincronizzazioni
- E.g., Uniform Memory Access: XEON

MultiComputer

- Cloud, architetture parallele
- Comunicazione tramite canali dedicati,
- Message passing, Send e Receive
 - Hypercubes

• Sistemi Distribuiti,

- Cluster, Massive parallel processor
 - GRID, cloud, ..

CLOU	D CON	PARK	SON
AWS VS.	AZURE VS.	GOOGLE	@simonholdorf
	aws	Azure	
Avalaible Regions	AWS Regions and Zones	Azure Regions	Google Compute Regions & Zones
Compute Services	Elastic Compute Cloud (EC2)	Virtual Machines	Compute Engine
App Hosting	Amazon Elastic Beanstalk	Azure Cloud Services	Google App Engine
Serverless Computing	AWS Lambda	Azure Functions	Google Cloud Functions
Container Support	Elastic Container Service	Azure Container Service	Container Engine
Scaling Options	Auto Scaling	Azure Autoscale	Autoscaler
Object Storage	Amazon Simple Storage (S3)	Azure Blob Storage	Cloud Storage
Block Storage	Amazon Elastic Block Storage	Azure Managed Storage	Persistent Disk
Content Delivey Network (CDN)	Amazon CloudFront	Azure CDN	Cloud CDN
SQL Database Options	Amazon RDS	Azure SOL Database	Cloud SQL
NoSQL Database Options	AWS Dyname DB Distriad, BigDataArc 20	Azure DocumentDB	Cloud Datastore

ELULUIGUMPARISU AZURE VS. AWS VS. GOOGLE asimonholdorf aws Azure Cloud Virtual Azure Virtual Network -Amazon VPC C Virtual Network Network - 11-AWS Direct Connect Azure Express Route Cloud Interconnect **Private Connectivity** Amazon Route 53 -Azure Traffic Manager Cloud DNS DNS Service Azure Operational Insights Amazon Cloud Trail Cloud Logging Log Monitoring Stackdriver TF Amazon CloudWatch Azure Application Insights -Performance Monitoring Monitoring Cloud Identity AWS Identity and Access Administration . Azure Active Directory and Access Management (IAM) Managament (IAM) and Security Google Cloud 0 AWS CloudHSM Azure Trust Center Compliance Platform Security Azure Stream Analytics ě Amazon Kinesis Cloud Dataflow Analytics Compute Engine AWS Opsworks Azure Automation Automation Management Cloud Deolyment Amazon CloudInformation Azure Resource Manager Management se. Manager Services & Options Amazon Simple Azure Notification Hub None Notifications Notification Service (SNS)

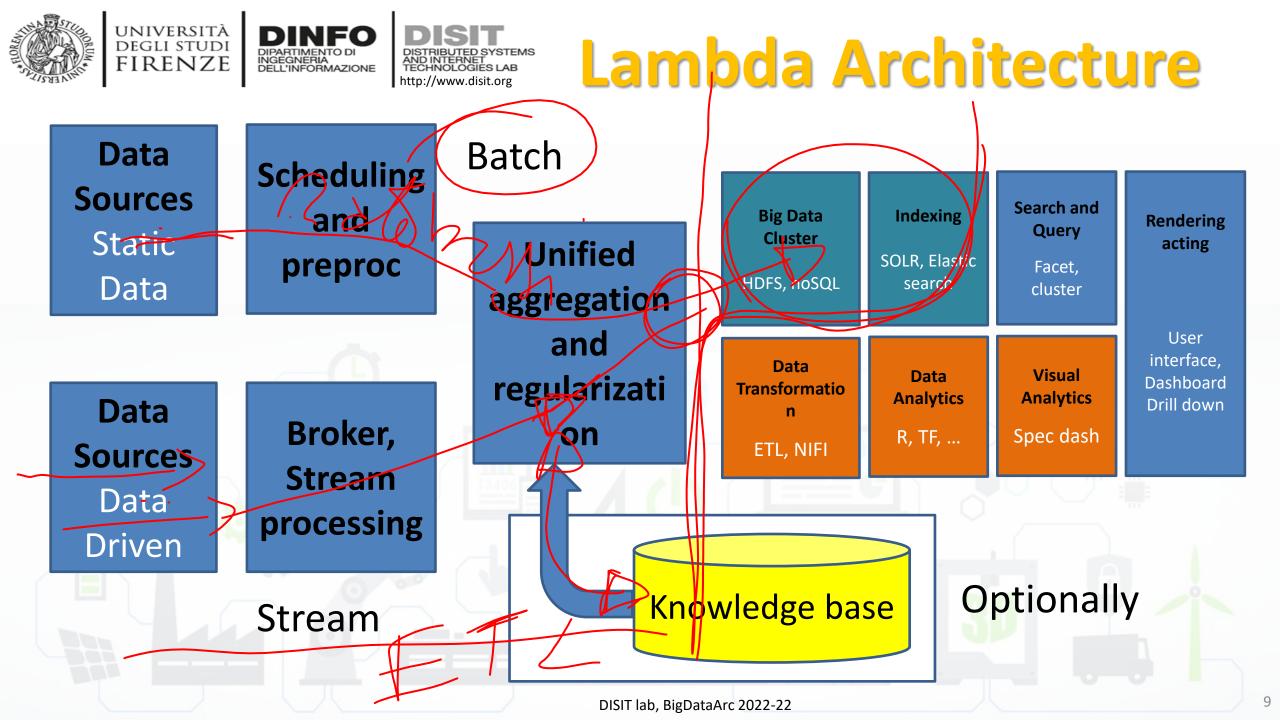
https://www.disit.org/

Paolo Nesi, paolo.nesi@unifi.it

Data Lake vs Data Warehouse

https://www.snap4City.org

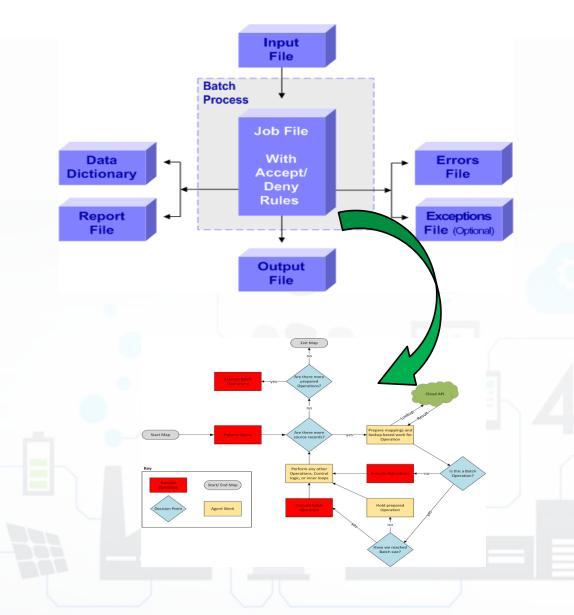
https://www.Km4City.org

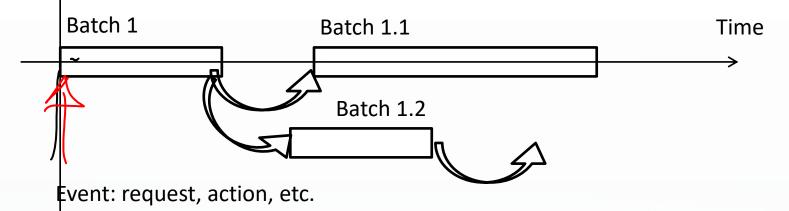


Architettura di base Big Data, IOT, Industry 4.0

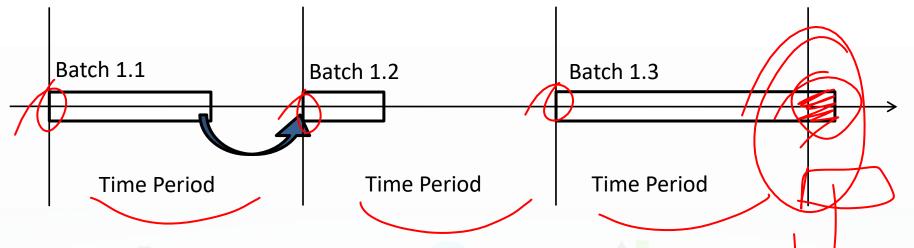
Data Sources Transatio ns sys,	Data Stream analysis Spark, Storm, Kafka	Big Data Cluster HDFS, noSQL	Indexing SOLR, Elastic search	Search and Query Facet, cluster	Rendering acting User
sensors Social media, ws, etc.		Data Transformati on ETL, NIFI	Data Analytics R, TF,	Visual Analytics Spec Dash	interface, Dashboard Drill down

Data Management: security, privacy, licensing, etc.





- Script language
- Smilar to workflow or flowchart
- Sequence of Commands
- Intermediate status on disk or memory
- Executed command driven:
 - On demand, sporadically
 - Periodically



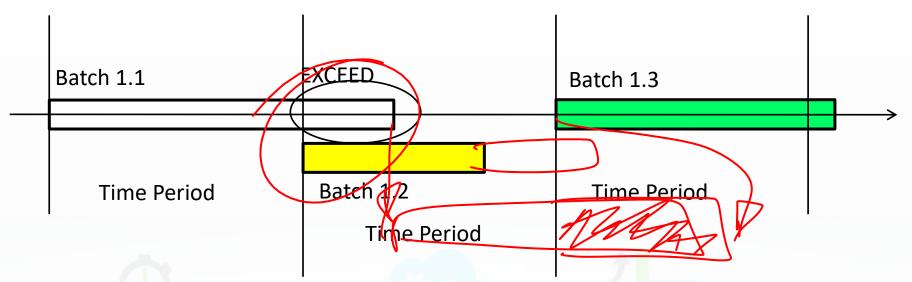
aPeriodic Batch processing

- Activated/Fired/Triggered by events, on demand, etc..
 - Synchronous with something
 - chained or not
- May fire/generate (ask to do or directly do) other jobs/batches:
 - on the same or different computers
 - Identical or different
- Activation may be asked to a third party manager
- Duration of execution depending on data !

Periodic Batch processing

- Scheduled on periodic Firing time event (with a validity period of firing conditions from xx to yy)
 - synchronous

INGEGNERIA DELL'INFORMAZIONE


http://www.disit.org

UNIVERSITÀ Degli studi

FIRENZE

- Execution time duration depending on data or other..
 - Execution may exceed the Time Period
- Each single execution MAY or MAY NOT depend on the preceding one

Periodic Batch processing

- If the Execution Time Duration exceeds the Time Period
 - A) the successive execution (Batch 1.2) is overlapped (yellow)
 - If it happens systematically: the number of tasks grow indefinitely consuming all resources → until crash
 - B) the successive execution (Batch 1.2) is canceled to wait for the next one (Batch 1.3, green),
 - skipping the second execution, Batch 1.2

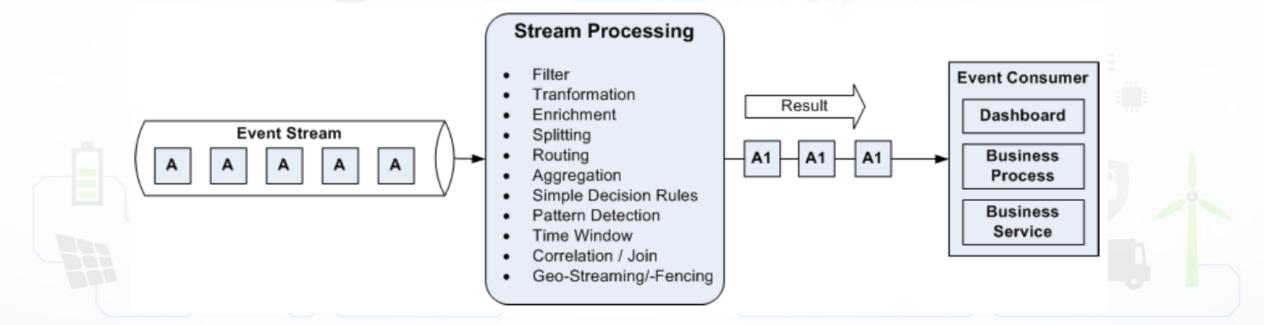
INTERNET

http://www.disit.org

UNIVERSITÀ

degli studi FIRENZE

DELL'INFORMAZIONE



- paradigma di programmazione parallela
 - Detto anche di real time processing
- Lavora con:
 - Dati parziali e non su tutto l'insieme dei dati.
 - Per esempio: valutare il contenuto spettrale di un segnale:
 - Su tutto il segnale
 - Su una finestra temporale di 30 secondi, per ogni secondo un nuovo valore, small delay/latency, (but present, see pipeline)
- L'attivazione del processo corrisponde spesso all'arrivo del dato nello stream, nella pipeline,
 - si ha sincronizzazione e comunicazione in un solo colpo.
 - Tipicamente una sequenza di azioni semplici attivate da
 - l'arrivo delle condizioni e dei dati per calcolare i risultati
 - ed in modo asincrono
 - tipicamente senza avere necessità di memorizzare il dato
 - ightarrow elimina alcuni problemi della programmazione parallela.

- Example on languages
 - SISAL (Streams and Iteration in a Single Assignment Language)
 - CUDA (Compute Unified Device Architecture) for NVIDIA GPU, SIMD
- Applications:
 - IOT, media recognition, log processing, social media enrichment, indexing,

Main Purpose

- To store a large amount of data, big data, and they can be structured and un-structured, several different kind of data:
 - Direct Data: Time series, geolocated data, events, shapes, measures, social media posts, video, files, logs, etc.
 - Most of them may have multiple features, e.g.: geolocated events with shape
 - Derived Data: predictions, typical trends, trajectories, flows, heatmaps,
 3D reconstructions, traffic reconstruction, planning, simulations, etc.
- for **exploiting them** for producing:
 - Deductions, hints, early warning,
 - Derived Data as well, in real time

Main Functions

- Data Extraction:
 - gathering, harvesting, ingestion, reception in push,
- Data Transformation:
 - Adaptation, mapping, formatting, conversion, enrich
 - Cleaning or leaving as it is
- Data Loading and Refreshing: saving in the storage
 - As it is, converted and ready to use, etc.

Data Usage:

- As it is from Storage (faster, more rigid schema, higher volume in access)
- Transformed on the fly (slower, more flexible, moderate volume in access)

DW vs DL

- ETL-Usage vs ELT-Usage
- DW:
 - More complex data ingestion
 - Simplify data ingestion for sporadically used data
 - Faster date usage unforeseen patterns/combinations
- DL:
 - Faster data ingestion
 - More complex data rendering since all combination are unplanned
 - Prepare data rendering for well known patterns

D

Parameters	Data Lake	Data Warehouse
Storage	In the data lake, all data is kept irrespective of the source and its structure. Data is kept in its raw form. It is only transformed when it is ready to be used	A data warehouse will consist of data that is extracted from transactional systems or data which consists of quantitative metrics with their attributes. The data is cleaned and transformed
HISTORY		Data warehouse concept, unlike big data, had been used for decades.
Data Capturing	istructured and unstructured in their original form from	Captures structured information and organizes them in schemas as defined for data warehouse purposes
Data Timeline	C	In the data warehouse development process, significant time is spent on analyzing various data sources.
Users		The data warehouse is ideal for operational users because of being well structured, easy to use and understand.
•	Data storing in big data technologies are relatively inexpensive then storing data in a data warehouse.	Storing data in Data warehouse is costlier and time-consuming.

https://www.guru99.com/data-lake-vs-data-warehouse.html

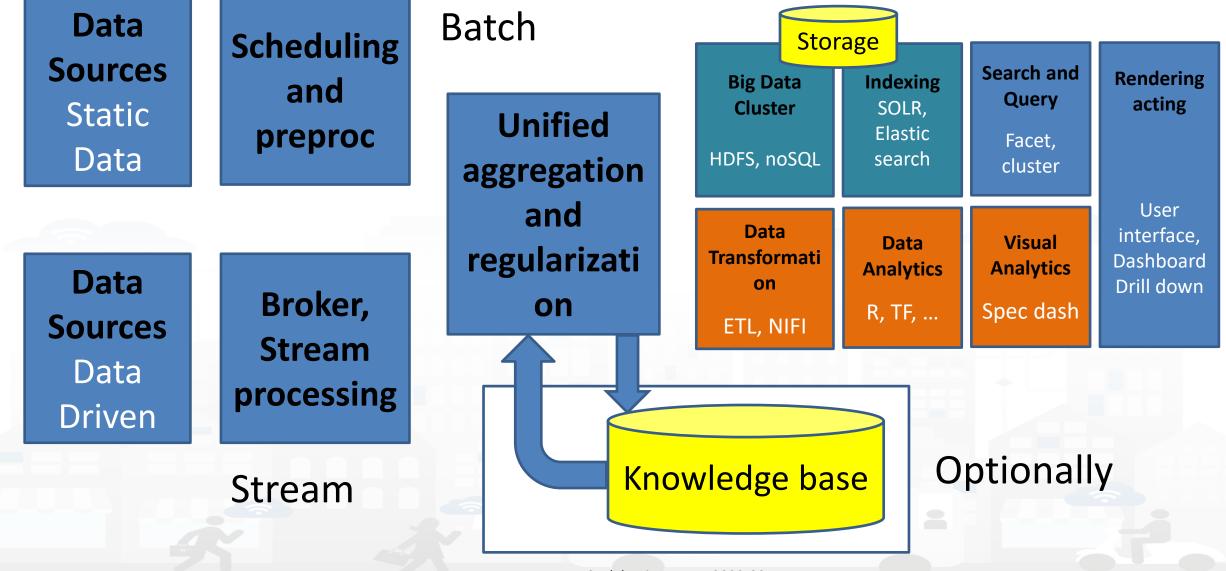
Parameters	Data Lake	Data Warehouse
Task	access data prior the process of transformed cleansed and	Data warehouses can provide insights into pre-defined questions for pre-defined data types.
Processing time	transformed, cleansed and structured. Thus, it allows users	Data warehouses offer insights into pre-defined questions for pre-defined data types. So, any changes to the data warehouse needed more time.
Schema		Typically schema is defined before data is stored. Requires work at the start of the process, but offers performance, security, and integration.
Data processing	luse of the FILL (Extract Load Transform) process.	Data warehouse uses a traditional ETL (Extract Transform Load) process.
Complain	Data is kept in its raw form. It is only transformed when it is ready to be used.	The chief complaint against data warehouses is the inability, or the problem faced when trying to make change in in them.
	They integrate different types of data to come up with entirely new questions as these users not likely to use data warehouses because they may need to go beyond its capabilities.	Most users in an organization are operational. These type of users only care about reports and key performance metrics.

https://www.guru99.com/data-lake-vs-data-warehouse.html

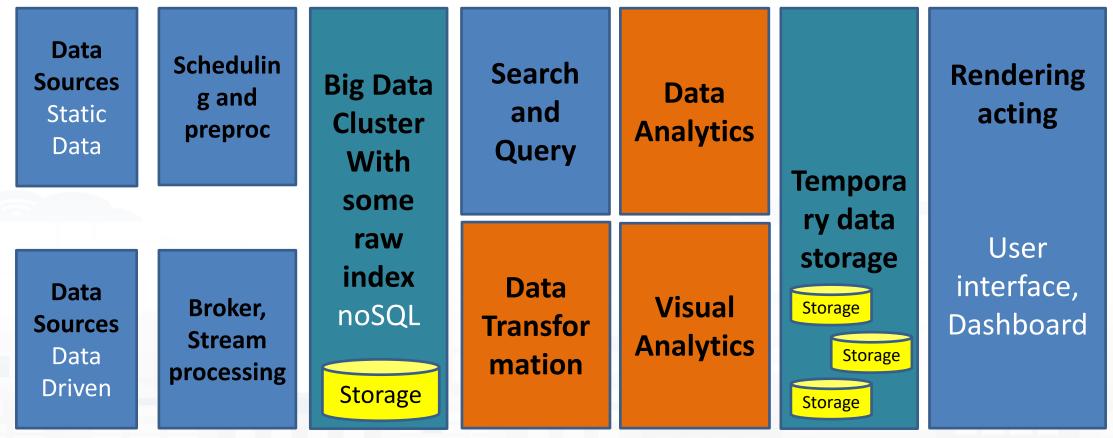
• Data Lake

- Original data preserved, structured and unstructured
- Lower costs of ingestion
- Lower performance in the usage
- Security: possible control at source
- More difficult to extend in usage, simpler in storage
- More scientist oriented
 - Moderated results in access

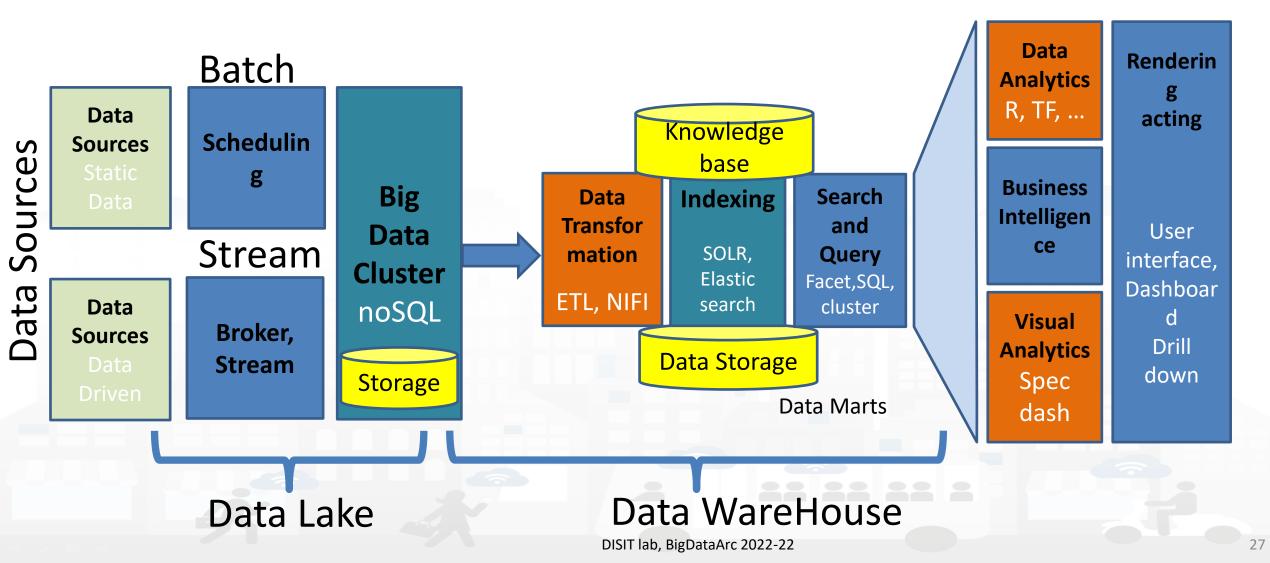
Data Warehouse


- Original data transformed and prepared for mainly structured or semi-structured
- Higher cost of ingestion
- Higher performance in the usage
- Security: Control on organized data
- More difficult to extend in storage, simpler in usage
- More Business and Purpose Oriented
 - Large volume of accesses

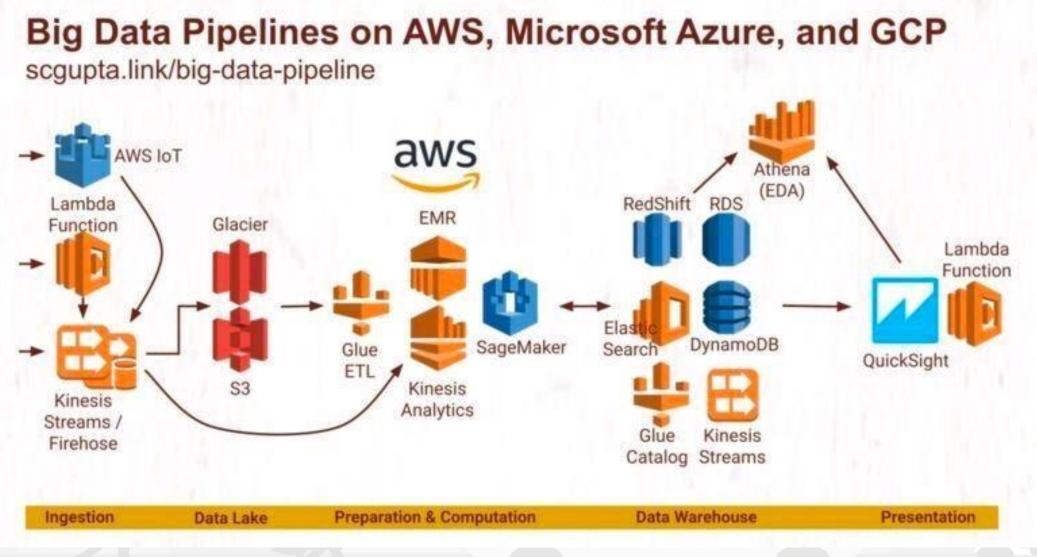
Top Cloud Data Warehouses at a Glance


	Amazon Redshift	Microsoft Azure Synapse	Google BigQuery	Snowflake Cloud Data Platform
Initial Release	2012	2016	2010	2014
Separates Storage and Compute	No	Yes	Yes	Yes
Multi-Cloud	No	No	No	Yes
Query Language	Amazon Redshift SQL	TSQL	Standard SQL 2011 & BigQuery SQL	Snowflake SQL
Elasticity	Yes - Manual	Yes – Manual and Automatic	Yes – Automatic	Yes – Automatic
МРР	Yes	Yes	Yes	Yes
Columnar	Yes	Yes	Yes	Yes
Foreign Keys	Yes	Yes	No	Yes
Transaction	ACID	ACID	ACID	ACID
Concurrency	Yes	Yes	Yes	Yes
Durability	Yes	Yes	Yes	Yes
Automation	No	No	No	No
Website	Link	Link	Link	Link
Free Trial	Yes	Yes	Yes	Yes

Batch



Stream



Combined Solutions

