
SoftwareX 27 (2024) 101805

Available online 4 July 2024
2352-7110/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

Microservices’ libraries enabling server-side business logic visual
programming for digital twins

Marco Fanfani , Luciano Alessandro Ipsaro Palesi , Paolo Nesi *

DISIT Lab, Department of Information Engineering, University of Florence, Via S. Marta 3 50139, Florence, Italy

A R T I C L E I N F O

Keywords:
Microservices
Digital twin
Server-side business logic
Node-RED, Business Intelligence

A B S T R A C T

Digital twins are evermore adopted for planning activities in smart city and industrial contexts, thus requiring
platforms able to handle their complexity, continuously adapting and improving data flow business logic behind
to the user needs. To respond to such needs microservice architecture paradigm and business logic scripting
solutions can be exploited. They should include facilities for data ingestion, transformation, visualization & event
driven user interaction, formal definition of functional aspects, exploitation and management of data analytics
and simulation, interoperability with external services of any kind, etc. To provide an easy and quick devel
opment tools, a large number of microservice has been formalized in a suite of new Nodes for the Node-RED
framework and distributed in terms of Libraries via JS Foundation. The proposed suites of nodes (e.g.,
Snap4City libraries on Node-RED) are widely adopted by academic and industrial groups and fully integrated
into Snap4City, an open-source platform for digital twins realization which can be used on cloud and on premise.

Metadata

Nr Code metadata description Please fill in this column

C1 Current code version v0.9.50 (node-red-contrib-snap4city-
user)
v0.5.17 (node-red-contrib-snap4city-
developer)
v0.0.13 (node-red-contrib-snap4city-d3-
dashboard-widgets)
v0.0.4 (node-red-contrib-snap4city-
tunnel)
v0.0.10 (node-red-contrib-snap4city-
milestone)

C2 Permanent link to code/repository
used for this code version

https://flows.nodered.org/search?te
rm=snap4city
https://github.com/disit/no
de-red-contrib-snap4city-user
https://github.com/disit/node-red-
contrib-snap4city-developer
https://github.com/disit/node-red
-contrib-snap4city-d3-dashboard-wid
gets
https://github.com/disit/node-re
d-contrib-snap4city-tunnel
https://github.com/disit/node-red-
contrib-snap4city-milestone

(continued on next column)

(continued)

Nr Code metadata description Please fill in this column

https://github.com/disit/node-red
-cauldron

C3 Permanent link to reproducible
capsule

https://www.snap4city.org

C4 Legal code license GNU AFFERO GENERAL PUBLIC
LICENSE, Version 3.

C5 Code versioning system used Git
C6 Software code languages, tools and

services used
JavaScript, HTML, CSS, Shell, Roff

C7 Compilation requirements,
operating environments and
dependencies

Node-RED, Node.js

C8 If available, link to developer
documentation/manual

https://www.snap4city.org/downlo
ad/video/Snap4Tech-Development-
Life-Cycle.pdf (Section IV.B.3)
https://www.snap4city.org/drupal
/node/593
https://www.snap4city.org/drupal
/node/790

C9 Support email for questions paolo.nesi@unifi.it

* Corresponding author.
E-mail address: paolo.nesi@unifi.it (P. Nesi).

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

https://doi.org/10.1016/j.softx.2024.101805
Received 24 April 2024; Received in revised form 27 May 2024; Accepted 17 June 2024

https://flows.nodered.org/search?term=snap4city
https://flows.nodered.org/search?term=snap4city
https://github.com/disit/node-red-contrib-snap4city-user
https://github.com/disit/node-red-contrib-snap4city-user
https://github.com/disit/node-red-contrib-snap4city-developer
https://github.com/disit/node-red-contrib-snap4city-developer
https://github.com/disit/node-red-contrib-snap4city-d3-dashboard-widgets
https://github.com/disit/node-red-contrib-snap4city-d3-dashboard-widgets
https://github.com/disit/node-red-contrib-snap4city-d3-dashboard-widgets
https://github.com/disit/node-red-contrib-snap4city-tunnel
https://github.com/disit/node-red-contrib-snap4city-tunnel
https://github.com/disit/node-red-contrib-snap4city-milestone
https://github.com/disit/node-red-contrib-snap4city-milestone
https://github.com/disit/node-red-cauldron
https://github.com/disit/node-red-cauldron
https://www.snap4city.org
https://www.snap4city.org/download/video/Snap4Tech-Development-Life-Cycle.pdf
https://www.snap4city.org/download/video/Snap4Tech-Development-Life-Cycle.pdf
https://www.snap4city.org/download/video/Snap4Tech-Development-Life-Cycle.pdf
https://www.snap4city.org/drupal/node/593
https://www.snap4city.org/drupal/node/593
https://www.snap4city.org/drupal/node/790
https://www.snap4city.org/drupal/node/790
http://paolo.nesi@unifi.it
mailto:paolo.nesi@unifi.it
www.sciencedirect.com/science/journal/23527110
https://www.elsevier.com/locate/softx
https://doi.org/10.1016/j.softx.2024.101805
https://doi.org/10.1016/j.softx.2024.101805
https://doi.org/10.1016/j.softx.2024.101805
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2024.101805&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

SoftwareX 27 (2024) 101805

2

1. Motivation and significance

Academic and industrial communities are posing a growing attention
toward digital twins [1,2], new technologies modelling faithful replicas
of real assets as single entities [3], industrial plants [4], and whole urban
environments [5]. Thanks to the possibility of monitoring the status of
entities via sensors, and computing predictions/simulations, digital
twins are nowadays fundamental tools for smart systems addressing
current and future challenges. Digital twins must integrate data from the
field and keep their representations aligned with the real physical en
tities. Due to the multiplicity and diversity of data, flexible data in
gestions are needed [6]. Moreover, digital twin status and evolution
have to be computed via scalable analytic tools, and interactive dash
boards are required to allows user to make changes on the digital twin
and show the results [7]. Due to the complexity of the integration
modular architectures based on microservices are necessary [8,9].
However, except for some basic building blocks readily available – such
as storage systems, dataflow managers, or brokers – business logic ap
proaches for data ingestion, analytics, and graphical interfaces usually
require complex adaptations to be exploited on different domains.
Therefore, there is the need of novel, open-source, easy-to-use solutions
for developing complex scripting logics to exploit microservices for
implementing specific functionalities, possibly requiring low coding
skills to enable non-expert developers to compound basic functionalities
for building applications, complex scenarios, business intelligence tools,
and decision support systems. Indeed, the advanced level of scripting
logic among microservices realizes scalable platforms that can quickly
evolve and adapt to novel requirements, enabling the development of
smart adaptive applications for digital twins.

Solutions for scripting logic among microservices include the
Amazon Web Services (AWS) IoT ecosystem [10], and Azure IoT by
Microsoft [11] where logic can be implemented in Java, Python, C#,
NET, Node.js, or Python to acquire devices’ data and display them on
proprietary dashboards. In [12] an open-source framework for devel
oping digital twin platform is presented. The usage of classic program
ming languages as Java, Python, etc., offers interfaces, function, and
classes to define IoT entities to be mirrored in the digital twin. However,
a remarkable competence in programming is required to extend and
adapt these solutions to specific needs. Visual programming is an
effective instrument for developing scripting logics, e.g., Internet of
Things Applications (IoTApps) [13], and solutions emerged over the
years [14–16]. Functional requirements of these solutions are mainly
covered by the provided microservices which can be added to perform:
data ingestion, transformation, storage load/retrieve, interaction,
simulation, data analytic, machine learning, interaction with user, etc.
However, several non-functional requirements have to be satisfied to
enable the creation of IoTApps: performance, community support,
extendibility, level of expressiveness, wide portability, open licensing.
For example, Atmosphere IoT [17], Mendix [18], and VISUINO [19] are
proprietary solutions with limited functionalities. Open solutions like
S4A [20], miniBloq [21], Eclipse Kura [22], Wyliodrin [23] are mostly
focused on embedded devices and are not adequate for deployment
on-cloud. More flexible is Node-RED [24,25], an open-source framework
from the JS Foundation based on Node.JS, since it is open-source, easy to
use, extendable, and not only focused on embedded devices. It provides
a web interface, i.e., the Flow Editor, for creating, editing, and executing
event-driven data flows with visual programming by connecting nodes.
A wide range of predefined nodes/functionalities are provided through
the Node Library [26], and additional nodes can be created. Node-RED
integrates with services via API using brokers, IoT devices, databases,
and a large range of microservices/tools. Data flows in Node-RED can be
triggered by external events (push messages), such as MQTT messages,
HTTP listeners, etc., and access to services in pull using Rest Calls, Web
Services, FTPs, etc. Quite similar to Node-RED is FLOGO [27], which
provides limited functionalities for managing flows. Even if, Node-RED
is a valid framework for IoTApp development; the available nodes (the

basic and those provided by the community) are not sufficient for
creating business logics for extensive digital twin platforms. Micro
services/nodes can be easily added. Moreover, such services must be
compliant with data privacy regulations, e.g., GDPR [28], and if they are
not integrated with each other in a suite adopting the same authenti
cation and authorization (A&A) mechanisms, as single sign on (SSO), are
not professionally usable since the developers are constrained to
continuously insert credentials for each microservice, while the duty of a
framework should be to facilitate the integration. Other missing aspects
of Node-RED that have been identified in the literature are a clear and
punctual debugging system [29], and the semantic enrichment of data
flows and data [30,31].

In this paper, to sustain the increasing interest of academical and
industrial sectors toward the development of digital twins, we present
the Digital Twin business logic development environment of Snap4City
which is open source, and it is based on an extension of Node-RED plus
Snap4City MicroService Libraries for Node-RED created to introduce
novel and essential functionalities required for the development of
digital twin solutions/applications. The Snap4City microservices are
accessible thanks to more than 190 Node-RED nodes. The programming
in terms of microservices can be regarded as a Server-Side Business Logic
(SSBL), i.e., an evolution of IoTApps [32,33,34]. Snap4City provides five
libraries of nodes to add basic and application levels functionalities for
multiple domains: smart city, energy, mobility, industry, and smart
applications in general. In simple manner, we state that SSBL, in short
Proc.Logic, is defined as:

Proc.Logic = Node − RED + Snap4City MicroServices Libraries of nodes.

Additionally, a solution to add advanced runtime debugging facil
ities to Node-RED nodes has been proposed by extending the Cauldron
approach (Capacitating Agile Users with Live Debugging Resources On
Node-RED) [29] into Node-RED instances on Snap4City.

To give the reader the coverage overview of the proposed Proc.Logic,
in Fig. 1, a simplified representation of the Snap4City MicroService
Digital Twin platform [35] is shown, not including authentication and
authorization aspects and corresponding machine-to-machine secure
communications [36]. Green blocks indicate MicroServices. Interactions
with the real world are performed via sensors, actuators, edge
computing – following the Internet of Things (IoT)/Web of Things
(WoT) paradigms – with some gateways (GW) and External Services, e.
g., Intelligent Transport Systems (ITS). Push/pull protocols can be used,
and processing logic can be installed into Node-RED on edge devices.
Data may be directly ingested/produced through some Broker, and/or
their services offered as MicroServices. Data/messages may flow into
multiple storages (relational and NoSQL databases, RDF stores, docu
mental storages as OpenSearch, etc.) directly passing from brokers to
Data Ingestion HUB through some dataflow manager (e.g., Apache
NiFi), or via their offered MicroServices. Data Analytic solutions and
Dashboards can access to the storage as well as interact among them to
provide event-driven functionalities based on MicroServices, and even
directly acting on the actuators of the physical environment, via
end-to-end secure connections. When needed, data on Brokers can be
directly visualized/received on/from dashboards in real-time, skipping
the storages to offer quick renderings. Actions performed on the visual
representation of the Digital Twin can be sent back as feedback to bro
kers and then to actuators, closing the loop from digital to real entities.
Snap4City was used to implement digital twin smart solutions in in
dustrial [37] and urban [38,39] contexts, covering essential aspect of
the digital twin concept – like interoperability, continuous updates,
interactive 2D and 3D visualizations, control of actuators in the real
world – by exploiting the microservices based on Node-RED. Note that,
the proposed libraries were designed to be primarily integrated into the
Snap4City platform. However, with some work on the source code,
endpoints called by the nodes can be changed and adapted to different
platforms.

The paper is organized as follows: in Section 2 the novel suite of

M. Fanfani et al.

SoftwareX 27 (2024) 101805

3

Node-RED MicroServices is presented. Section 3 provides examples on
the usage of the introduced nodes, while in Section 4 impact of pre
sented libraries of MicroServices is discussed. Conclusions are drawn in
Section 5.

2. Software description

In this section, the framework of Snap4City MicroServices of Nodes
(in short Snap4City Nodes or Nodes) developed to introduce a large set
of functionalities according to the Node-RED approach is presented.
Note that, since the novel nodes have been developed strictly following
the Node-RED approach, any developer with minimal experience in
using Node-RED can easily use the novel nodes without any additional
training. In Fig. 2, a graphic representation of main categories of Nodes
for developing Proc.Logic data flows is shown. Grey areas represent
standard Node-RED functionalities/nodes and the exploitation of third
parties microservices from the open community. Green areas indicate
introduced functionalities, namely: Entity Management, Visualization
and Interaction, External Services Integration, Analytic Services, Plat
form Management. For each of them, sub-categories are discussed in
Section 2.2. The introduced Nodes include A&A to access functionalities

according to specific user’s profile. The machine-to-machine authenti
cation is automatically carried out exploiting a SSO schema using
OpenID Connect (OAuth and access token) standard, also compatible
with SAML and others. The A&A can refer to one or more Snap4City
installations on public or private cloud and on premise. When Nodes are
used in other contexts, authentication parameters can be specified in
dedicated Node configuration panels.

The Snap4City Nodes are open-source and are accessible from the
Node-RED Library as five distinct libraries, which can be installed/
updated separately [40]. Nodes’ codes can be obtained from NPM and
from GitHub [41]. The two main libraries are: node-red-con
trib-snap4city-user including Nodes requiring low-level programming
capabilities (parameters are specified within the node’s panel and most
of the Nodes produce single variable outputs instead of complex JSONs);
node-red-contrib-snap4city-developer providing advanced functionalities
for expert users accepting complex JSONs to create strongly dynamic
and flexible Proc.Logics. The other three libraries include: node-r
ed-contrib-snap4city-d3-dashboard-widgets to introduce dashboard wid
gets based on D3.js [42]; node-red-contrib-snap4city-milestone to
interoperate with Video Management Systems (VMS) of Milestone [43];
node-red-contrib-snap4city-tunnel to offer tunneling for remote

Fig. 1. Schematic representation of the Snap4City Microservice Digital Twin platform. All green modules are exploited via their exposed microservices, and the blue
one allows to visual programming processing logic for scripting business logic and thus for implementing SSBL processes exploiting those microservices, defining
event driven data flows, connecting digital twins with real world, and mediation with process logic SSBL.

Fig. 2. Categories of microservices used to define Proc.Logics in Snap4City digital twin platform. Green blocks indicate areas of microservices functionalities added
in Snap4City libraries. Grey blocks represent standard and additional functionalities from community which can be exploited by third parties. For each Green block a
set of sub-categories of accessible MicroServices are listed.

M. Fanfani et al.

SoftwareX 27 (2024) 101805

4

management of edge including Proc.Logic. All the libraries can be
installed in any Node-RED tool, both on cloud and on edge, on any
operating system.

At system level, an extended debugging capability has been devel
oped for the Node-RED editor to monitor passages of JSON messages and
setting breakpoints to halt flow execution. These features have been
obtained by extending [29] and are automatically deployed for
Node-RED containers on Snap4City. In Fig. 3, a Proc.Logic on the
Node-RED Flow Editor with the extended debugging activated is pre
sented. The debugging offers the possibility to monitor messages
entering any kind of node (not only those of Snap4City), set breakpoints
to halt the flow and analyze it, proceed step-by-step, and release or
delete the message queue. It is possible to observe the trend of numerical
values of the last 10 messages and additional information can be visu
alized by expanding the debug panel of the node to allow the user to
inspect or delete the history of messages received and sent, inject
personalized messages, and set breakpoints. The user can specify attri
butes to be tracked using standard JavaScript syntax. Such extension
offers an augmented development environment where programmers can
obtain better understanding of the flows and the exchanged messages
and be able to create more complex Proc.Logics that could be difficult to
develop using the standard debug panel offered by the Node-RED editor.

Additionally, a Snap4City version of Node-RED engine and tool have
been developed for Android as an accessible APK [44]. It includes
Snap4City main libraries to communicate and exploit MicroServices.

2.1. Software architecture

In Fig. 4, a conceptual representation of each Snap4City nodes with
respect to Node-RED, A&A, and cloud microservices is reported. Each
Node is executed by Node.JS engine and supported by the above-
described central debug directly enforced on the latter. In addition,
Node-RED provides a webpage for visual programming, debugging and
configuration. The Node input is a JSON message (msg), and the output

messages of a Node can be provided via one or more channels/pins/outs.
Input/output messages are exchanged as events among Nodes into a
data flow according to connections defined in the visual editor. Any
input message has priority over manual setup/configurations. A specific
Node implementation may call API in different protocols (HTTPs, FTPs,
etc.). This is the mechanism by which the Snap4City MicroServices, as
well as External Services, are provided as Nodes. The A&A Node is
responsible for keeping active/refreshed the A&A to handle requests
toward Snap4City MicroServices, passing a valid token to the other
nodes. To this end, specific A&A support is provided in front of all ser
vices and may be controlled via API management system. Among them
there are APIs for Data Management, Data Analytic exploitation (via
Plumber for RStudio and via Flask for Python), Platform Management,
Dashboards and Synoptics setting and control, Web Socket (WS) for
bidirectional message passing, Brokers and Gateways, and VPN Edge
access for remote management.

2.2. Software functionalities

In Section 2.1 we stressed the scientific contribution as non-
functional requirements: integrated and uniform A&A, debug and
interoperability from cloud and edge. In this section, a description of the
Snap4City Nodes/MicroServices is provided according to green blocks of
Fig. 2.

Entity Management Nodes include functionalities to handle the
data entities modeled in the digital twin platform and allows Data Load/
Search/Retrieval on each of them with suitable Nodes (exploiting as
MicroServices Snap4City API, knowledge base in RDF stores, Open
Search, etc.). The data entities can be KPI (Key Performance Indicators),
POI (Point of Interest), GIS (Geographic Information System) data, as
maps via WMS/WFS protocols, Scenarios (describing areas with road
graph and entities), Time Series, Public transport data (traffic, parking,
people flow, etc.), High Level Types, HLT (heatmaps, origin destination
matrices, trajectories, etc.), IoT Device and smart data models (e.g.,

Fig. 3. Example of Proc.Logic flow in the Node-RED editor with activated the extended debugging capabilities. For each node, a panel reports values and trends of
data specified by the developer. Breakpoints can be activated to halt the flow, proceed step-by-step, resume, or abort the process. In background execution after
closing the editor the break points are automatically quitted.

M. Fanfani et al.

SoftwareX 27 (2024) 101805

5

FIWARE NGSI [45]) managed via IoT Directory and brokers, 3D models.
The Data Entities can be mapped each other, and the Authorization
module controls the access for their manipulation. The microservices
allow to discover and retrieve information exploiting the API and per
forming spatial, temporal and relational semantic queries on knowledge
base on the basis of the Km4City Ontology [46].

Visualization & Interaction Nodes are fundamental to visualize
real-time and historical data and results of any entity kind specified
above, data coming from historical data storage and event driven [47].
For vent driven, specific widgets and synoptics can be placed in dash
boards [48]. Widget and communication with them are made available
as Nodes to render and get events from the user interactions based on
secure WS to set an open communication channel between the users and
the Proc.Logic, thus producing secure real-time event-driven data flows,
as end-to-end.

External Service Integration Nodes are used to easily integrate in
the digital twin platform third party services. For example, to manage
maintenance tickets and events with OpenMAINT [48]; to manage
events from TV cameras and send events to the VMS of Milestone [43];
to collect or publish data from/on social networks (Facebook, Telegram,
etc.); to send/receive SMSs; to manage Open-Data via CKAN API; to
interoperate with GIS, BIM (Building Information Modeling), ITS, etc.
There are no particular limits to the integration capabilities of services.

Analytic Services Nodes are used to call/develop: (i) ready to use
analytic services such as routing, geo-utilities (GPS distance, GPS in
clusion verification, geo reversing, etc.), traffic flow reconstruction,
prediction models, traffic simulation, computing KPI, pollutant simula
tion/prediction, etc.; (ii) custom data analytic processes can be coded in
Python or R Studio by developers on the platforms, and are automati
cally transformed in microservices on containers by Snap4City platform
and engine. They can implement statistics, optimizations, simulations,
predictive models, clustering, classification, What-if analysis, etc. [49].
The data analytics processes can exploit parallel architectures with
dedicated hardware such a NVIDIA boards as well as any CPU/GPU
solution via a distributed MLOps support.

Platform Management Nodes provide access to services Proc.Logic
Management (such as restart, upgrade, etc., of processes), Ownership
Management (change ownership) of processes or entities, Data Logs,
general A&A, and VPN for remote access to Proc.Logic in execution on
edge Node-RED installations.

In Table 1, a comparison between the proposed Snap4City Proc.Logic
and the state-of-the-art solutions presented in Section 1 is shown. As can
be seen, AWS and Azure cover most of the functionalities, however they
are closed-source solutions and thus with difficult extendibility, and

they do not provide visual programming, synoptics and have limited
event driven support on dashboards. Open-source solutions show limits
in particular for visualization, event driven management on dashboards,
integration of external services and analytics, and platform manage
ment. Moreover, it is worth noticing that almost none of these solutions
support a comprehensive system for A&A with single sign on, and GDPR
support: this is a fundamental aspect of digital twin platforms to comply
with data protection and privacy regulations and having to perform
independent authentications and authorizations for each entity, analytic
or service is tedious and time consuming. Differently the proposed so
lution offers a wide range of functionalities, exploit visual programming,
is open-source, is compliant with data and privacy regulations using a
single sign-on schema, and offer debugging capabilities.

The actual change of paradigm from traditional IoT App to Digital
Twin process logic resides in the integrated paradigm of a range of
microservices covering the whole area described in Fig. 2, plus the non-
functional aspects of the development environment such as the possi
bility of maintaining aligned the physical and digital twin, and also the
possibility of simulating changes on the digital side without affecting the
physical, for example during the optimization and what if analysis.
Thus, multiple scenarios can be explored at the same time, while the
twin is maintained aligned. Moreover, digital twins, having to contin
uously update to reflect the real-world entities, requires more frequent
maintenance activities. Snap4City Proc.Logic as an evolution of the
IoTApps enforcing a large set of microservices/node and some changes
on development tools: debug, MLOps, data analytics, and a more
powerful interfaces, both in 2D and 3D. The flows in the Node-RED can
be downloaded, saved and shared. On Snap4City is also possible to save
them on a resource manager, and a daily incremental back up is per
formed. Moreover, each Node-RED can be set to save versioned flow on
Github, under the responsibility of the single user.

3. Illustrative examples

Fig. 5 shows an example of how a Proc.Logic implements the back-
office logic for managing critical events, connecting video cameras
and recording events, adding events from webpages, observing the po
sition of events, and managing the evolution of the events. In this case,
the Milestone VMS (Video Management System) microservice is
exploited to enable monitoring and management of data from surveil
lance cameras within Snap4City. VMSs are widely used to control spe
cific areas: obtained data are directly sent to the digital twin to provide
operators direct access to video feeds, and to perform simulation and
computing HLT data, e.g., heatmaps representing the number of

Fig. 4. Architecture of a Snap4City Node with respect to Node-RED and Snap4City platform.

M. Fanfani et al.

SoftwareX 27 (2024) 101805

6

presences or level of safety and security, etc. In the Proc.Logic of Fig. 5a,
the yellow nodes are calling microservices of VMS. The Proc.Logic is
responsible for collecting events and save them in the Snap4City storage
via a broker (bright-green nodes) and to VMS [50]. In addition, images
captured by the TV cameras are grabbed and saved for showing them to
the operator, recording the critical case. For each fired event, a heatmap
is generated and saved via Python analytics called by node Heatma
pUpdate. Blue nodes are responsible for sending data to dashboards
presenting data tables and widgets to provide interactive user interfaces
to monitor and manage data and events collected by the integrated
surveillance system (see Fig. 5b and 5c). The application’s routing
module (activated by the selector-to-map node on the left side of the
dashboard) computes the optimal route from the current location of the
rescue team to the event/target location and display it on map taking
into account the traffic conditions to reach the target location.

Routing can also be requested by clicking on a point on the map to
select the starting point, with the destination set to the selected event or
the last event. A section of the workflow is dedicated to managing other
functionalities of the dashboard. These include tasks, such as retrieving
saved images from cameras and displaying them. The management also
include the evolution of event state and the analysis of contextual in
formation in the area. Without the adoption of the Snap4City micro
services discussed in this paper, the implementation of a similar solution
would have been extremely complex. This would require the use of
numerous nodes from external services not well integrated and inter
operable on security aspects, significantly increasing the complexity and
cost of the system.

The reader is invited to visit www.snap4city.org to experiment with
the Snap4City platform and the Proc.Logic development framework that
implements all the microservices presented in the previous sections.

4. Impact

The development of Proc.Logic is a fundamental tool to handle the
complexity of digital twin platforms. The proposed model providing a
large set of Nodes/MicroServices can be exploited on the front-end to
manage widgets showing data and results [51], and on the server-side to
build complex event-driven business logic, to execute analytic processes
[52], to ingest, transform, retrieve/load data [53], and to activate pro
cess executions on user request. Differently from state-of-the-art solu
tions, our Proc.Logic model is based on a visual programming paradigm
usable by both non-expert and skilled programmers. The additional
functionalities introduced with the proposed Nodes/MicroServices help
to quickly code and deploy new Proc.Logic facilitating the continuous
evolution of the digital twin. A list of scientific publications exploiting
solutions developed with the proposed tools is available in [54].

A usability test was carried out including twenty-four expert and
non-expert users (less than 20 % of them was a professional developer)
[55,32]. After a brief introduction about Node-RED and Snap4City
Nodes, users were asked to complete two Proc.Logic development ex
ercises, including data retrieval, processing, and result visualization on a
dashboard. Note that such task included the exploitation of the proposed
novel nodes for building dashboards, retrieve data from devices
modeled into the platform, call some analytic service for statistical
analysis. Produced data flows were judged according to the fulfilment of
given requirements: a 100 % score was assigned when fully compliant;
inferior scores, proportional with satisfied requirements, were given to
incomplete exercises. 87.5 % of users completed both exercises on
paper, with an average score of 71.42 % and 83.92 % for the first and
second test respectively. 83.33 % and 66.66 % of users also completed
the implementation of the Proc.Logic for the first and second exercises
respectively. In this case, a score of 85.75 % was obtained in average for
the first test, and 83.42 % for the second. When users were asked how

Table 1
Comparison among state-of-the-art Proc.Logic/IoTApp development frameworks. Symbols: Y=yes, N=no, L=limited, E=via third party solution, Y/E= via basic plus
third party.

M. Fanfani et al.

http://www.snap4city.org

SoftwareX 27 (2024) 101805

7

simple the flow development was, 95.28 % of users found the devel
opment somewhat easy, and more than 56 % of them found the activity
easy or very easy. Moreover, 50 % of users stated that the process for
creating Proc.Logic was five times faster compared to other
state-of-the-art tools they knew.

The above described Snap4City Libraries of Nodes for Node-RED
have been largely adopted. This solution is integrated into the
Snap4City platform as main tool for Proc.Logic development. The plat
form is in use in smart cities and industries mostly in Italy and Europe
(see [56] for a full list), including the ISPRA JRC of the European
Commission. The largest installation is multi-tenant with 19 organiza
tions, used by more than 8000 users, and counting more than 700 Proc.
Logics in operation. Snap4City has been used in several multidisci
plinary applications and scenarios (e.g., [57,58]) in which Proc.Logic
development has been carried out also by non-expert programmers.

Snap4City Libraries of Nodes for Node-RED have been downloaded
more than 40,000 times1 from September 2022, with the most down
loaded packages being the user (27,543 downloads) and developer

(10,401 downloads) libraries. The proposed tools are also used by Snap4
[59] and DAI [60], two start-ups that develops data ingestion, moni
toring, and analytic solutions for several industrial realities and public
administrations.

5. Conclusions

Digital twins are becoming fundamental tools for smart cities and
industries, exploiting the IoT/WoT paradigm. Proc.Logic/IoTApp,
implemented exploiting MicroServices, are required to script server-side
business logic using functionalities for data ingestion and trans
formation, data analytics, interoperability, and interactive visualization.
To obtain digital twin representations providing business intelligence
facilities the logic counterpart must be easily developed and updated to
guarantee a continuous integration of new scenarios, data, and ana
lytics. Therefore, we developed and proposed since a number of years a
suite of Nodes extending the Node-RED framework to quickly create
Proc.Logic/IoTApp by visual programming. Novel functions/nodes for
entity management, integration of external services, data analytic
management and exploitation, visualization and user interaction, and
platform management have been illustrated. Moreover, we introduced

Fig. 5. Example of an Proc.Logic for smart city domain. In (a) the process implements the business logic of the solution for managing critical events. In (b) and (c) the
related dashboards.

1 Statistics obtained from http://npm-stats.org/

M. Fanfani et al.

http://npm-stats.org/

SoftwareX 27 (2024) 101805

8

extended debugging functionalities to help the development of data
flows. The proposed libraries of Nodes have been largely used in several
research and industrial applications/projects and well accepted from
expert and non-expert users, confirming their usefulness in smart plat
form development.

Since digital twin technologies are evolving in multiple contexts, in
order to provide solutions for easy development of Proc.Logics, addi
tional nodes specialized to carry out particular functions will be required
in the future. This is the typical activity behind this kind of complex
platform which are in continuous development continuous integration
model. The main observed directions of evolution are on developing:
high level nodes to reduce the complexity of visual programming, simple
nodes for specific protocols and services, microservices on data analytics
and on visual programming of client-side business logic on dashboards
to simply and making faster the development of new smart applications,
and business solutions.

CRediT authorship contribution statement

Marco Fanfani: Writing – original draft, Software, Project admin
istration, Formal analysis. Luciano Alessandro Ipsaro Palesi: Writing –
original draft, Validation, Software, Investigation. Paolo Nesi: Writing –
review & editing, Writing – original draft, Supervision, Resources,
Project administration, Investigation, Funding acquisition,
Conceptualization.

Declaration of competing interest

The author declare to do not have any conflict.

Data availability

No data was used for the research described in the article.

Acknowledgements

This research was financed by the European Union
—NextGenerationEU (National Sustainable Mobility Center
CN00000023, Italian Ministry of University and Research Decree n.
1033— 17/06/2022, Spoke 9). A special thanks to the many users and
developers working on the Snap4City platforms. Snap4City (https:
//www.snap4city.org), and Km4City are open technologies of DISIT
Lab (https://www.disit.org).

References

[1] Xu H, Wu J, Pan Q, Guan X, Guizani M. A survey on digital twin for industrial
internet of things: applications, technologies and tools. IEEE Commun Surv Tutor
2023;25(4):2569–98. https://doi.org/10.1109/COMST.2023.3297395.
Fourthquarter.

[2] Lei B, Janssen P, Stoter J, Biljecki F. Challenges of urban digital twins: a systematic
review and a Delphi expert survey. Autom Constr 2023;147:104716.

[3] Bondarenko Oleksiy, Fukuda Tetsugo. Development of a diesel engine’s digital
twin for predicting propulsion system dynamics. Energy 2020;196:117126.

[4] Xu Bin, Wang June, Wang Xinping, Liang Zhihong, Cui Liming, Liu Xiao,
Ku Anthony Y. A case study of digital-twin-modelling analysis on power-plant-
performance optimizations. Clean Energy September 2019;3(3):227–34. https://
doi.org/10.1093/ce/zkz025.

[5] Adreani Lorenzo, Bellini Pierfrancesco, Colombo Carlo, Fanfani Marco, Nesi Paolo,
Pantaleo Gianni, Pisanu Riccardo. Digital twin framework for smart city solutions.
In: Proceedings of the DMSVIVA; 2022.

[6] Lei B, Janssen P, Stoter J, Biljecki F. Challenges of urban digital twins: a systematic
review and a Delphi expert survey. Autom Constr 2023;147:104716. https://doi.
org/10.1016/j.autcon.2022.104716.

[7] Barricelli BR, Casiraghi E, Fogli D. A survey on digital twin: definitions,
characteristics, applications, and design implications. IEEE Access 2019;7:
167653–71. https://doi.org/10.1109/ACCESS.2019.2953499.

[8] Ciavotta Michele, et al. A microservice-based middleware for the digital factory.
Procedia Manuf 2017;11:931–8.

[9] Grübel J, et al. Outlining the Open Digital Twin Platform. In: 2023 IEEe smart
world congress (SWC); 2023. p. 1–3. https://doi.org/10.1109/
SWC57546.2023.10448743.

[10] Amazon.com, Inc. Amazon web services. 2024 [Computer software] URL: http
s://aws.amazon.com/(Accessed on April 05, 2024).

[11] Microsoft Corporation. Microsoft Azure IoT. 2024 [Computer software] URL:
https://azure.microsoft.com/en-us/solutions/iot (Accessed on April 05, 2024).

[12] Picone Marco, Mamei Marco, Zambonelli Franco. WLDT: a general purpose library
to build IoT digital twins. SoftwareX 2021;13:100661.

[13] Ali Zainab H, Ali Hesham A, Badawy Mahmoud M. Internet of Things (IoT):
definitions, challenges and recent research directions. Int J Comput Appl 2015;128
(1):37–47.

[14] Ray Partha Pratim. A survey on visual programming languages in internet of
things. Sci Program 2017;2017:1231430. https://doi.org/10.1155/2017/
1231430. Article ID6 pages.

[15] Ihirwe Felicien, Ruscio Davide Di, Mazzini Silvia, Pierini Pierluigi,
Pierantonio Alfonso. Low-code engineering for internet of things: a state of
research. In: Proceedings of the 23rd ACM/IEEE International conference on model
driven engineering languages and systems: companion proceedings (MODELS ’20).
New York, NY, USA: Association for computing machinery; 2020. p. 1–8. https://
doi.org/10.1145/3417990.3420208. Article 74.

[16] Silva M, Dias JP, Restivo A, Ferreira HS. A review on visual programming for
distributed computation in IoT. In: Paszynski M, Kranzlmüller D,
Krzhizhanovskaya VV, Dongarra JJ, Sloot PM, editors. Computational science –
iccs 2021. Cham: Springer; 2021. https://doi.org/10.1007/978-3-030-77970-2_34.
ICCS 2021. Lecture Notes in Computer Science(), vol 12745.

[17] Atmosphere IoT Corp. Atmosphere IoT platform. 2024. (Version 1.5.5) [Computer
software] URL: https://atmosphereiot.com/(Accessed on April 05, 2024).

[18] Mendix Technology BV. Mendix. 2024 [Computer software] URL: https://www.
mendix.com/building-iot-applications/(Accessed on April 05, 2024).

[19] Visuino.com. VISUINO. 2024 [Computer software] URL: https://www.visuino.
com/(Accessed on April 05, 2024).

[20] M. Conde, V. Casado, J. Güell, J. Garcìa, B. Romagosa, J. Delgado. Scratch for
Android. 2024. (Version 1.6) [Computer software] URL: https://s4a.cat/(Accessed
on April 05, 2024).

[21] J. Pizarro, R. Cossovich, A. Kharsansky, F. Lanza, D. Vilaseca, A. Lawrance.
miniBloq. 2024. (Version 0.83) [Computer software] URL: https://blog.minibloq.
org/(Accessed on April 05, 2024).

[22] Eclipse Foundation AISBL. Kura. 2024 (Version 5.4.0) [Computer software] URL:
https://eclipse.dev/kura/(Accessed on April 05, 2024).

[23] Wyliodrin.com. Wyliodrin STUDIO. 2024 (Version 2.3.2) [Computer software]
URL: https://wyliodrin.studio/(Accessed on April 05, 2024).

[24] OpenJS Foundation. Node-RED. 2024. (Version 3.1.8) [Computer software] URL:
https://nodered.org/(Accessed on April 05, 2024).

[25] OpenJS Foundation. Node-RED tutorial. 2024. [Computer software] URL: https:
//nodered.org/docs/tutorials/(Accessed on May 21, 2024).

[26] OpenJS Foundation. Node-RED Library. 2024 URL: https://flows.nodered.org/
(Accessed on April 05, 2024).

[27] Cloud Software Group, Inc. Project FLOGO. 2024.
[28] European Parliament and Council of the European Union. “European general data

protection regulation (GDPR).” 2016. URL: https://gdpr.eu/(Accessed on May 21,
2024).

[29] Diogo Torres. Node-RED cauldron tool. 2024. (Version 0.1-alpha) [Computer
software] URL: https://github.com/SIGNEXT/node-red-cauldron (Accessed on
April 05, 2024).

[30] Steinmetz C, Schroeder GN, Sulak A, Tuna K, Binotto A, Rettberg A, Pereira CE.
A methodology for creating semantic digital twin models supported by knowledge
graphs. In: 2022 IEEE 27th International conference on emerging technologies and
factory automation (ETFA). IEEE; 2022. p. 1–7.

[31] Thuluva AS, Anicic D, Rudolph S, Adikari M. Semantic Node-RED for rapid
development of interoperable industrial IoT applications. Semant Web 2020;11(6):
949–75.

[32] Badii C, Bellini P, Difino A, Nesi P, Pantaleo G, Paolucci M. Microservices suite for
smart city applications. Sensors 2019;19(21):4798.

[33] Udoh IS, Kotonya G. Developing IoT applications: challenges and frameworks. IET
Cyber-Physic Syst 2018;3(2):65–72.

[34] Asghari P, Rahmani AM, Javadi HHS. Internet of Things applications: a systematic
review. Comput Netw 2019;148:241–61.

[35] Snap4City of DISIT Lab. 2024. [Computer software] URL: https://www.snap4city.
org of https://www.disit.org (Accessed on April 05, 2024).

[36] C. Badii, P. Bellini, A. Difino, P. Nesi, "Smart City IoT platform respecting GDPR
privacy and security aspects", IEEE Access, 2020. 10.1109/ACCESS.2020.2968741.

[37] Bellini Pierfrancesco, et al. High level control of chemical plant by industry 4.0
solutions. J Ind Inf Integr 2022;26:100276.

[38] Adreani L, Bellini P, Colombo C, Fanfani M, Nesi P, Pantaleo G, Pisanu R.
Implementing integrated digital twin modelling and representation into the
Snap4City platform for smart city solutions. Multimed Tools Appl. 2023. p. 1–26.

[39] DISIT Lab. Snap4City Smart city digital twin of florence. 2024 [Computer
software] URL: https://digitaltwin.snap4city.org/(Accessed on April 05, 2024).

[40] DISIT Lab. MicroServices/Nodes. [Computer software] URL: https://flows.nodere
d.org/search?term=snap4city&type=node&type=flow&type=collection
(Accessed on April 05, 2024).

[41] DISIT Lab. DISIT Lab GitHub page. 2024. URL: https://github.com/disit (Accessed
on April 05, 2024).

[42] M. Bostock and Observable Inc. D3.js library. 2024. [Computer software] URL:
https://d3js.org/(Accessed on April 05, 2024).

M. Fanfani et al.

https://www.snap4city.org
https://www.snap4city.org
https://www.disit.org
https://doi.org/10.1109/COMST.2023.3297395
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0002
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0002
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0003
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0003
https://doi.org/10.1093/ce/zkz025
https://doi.org/10.1093/ce/zkz025
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0005
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0005
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0005
https://doi.org/10.1016/j.autcon.2022.104716
https://doi.org/10.1016/j.autcon.2022.104716
https://doi.org/10.1109/ACCESS.2019.2953499
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0008
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0008
https://doi.org/10.1109/SWC57546.2023.10448743
https://doi.org/10.1109/SWC57546.2023.10448743
https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/en-us/solutions/iot
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0012
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0012
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0013
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0013
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0013
https://doi.org/10.1155/2017/1231430
https://doi.org/10.1155/2017/1231430
https://doi.org/10.1145/3417990.3420208
https://doi.org/10.1145/3417990.3420208
https://doi.org/10.1007/978-3-030-77970-2_34
https://atmosphereiot.com/
https://www.mendix.com/building-iot-applications/
https://www.mendix.com/building-iot-applications/
https://www.visuino.com/
https://www.visuino.com/
https://s4a.cat/
https://blog.minibloq.org/
https://blog.minibloq.org/
https://eclipse.dev/kura/
https://wyliodrin.studio/
https://nodered.org/
https://nodered.org/docs/tutorials/
https://nodered.org/docs/tutorials/
https://flows.nodered.org/
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0027
https://gdpr.eu/
https://github.com/SIGNEXT/node-red-cauldron
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0030
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0030
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0030
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0030
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0031
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0031
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0031
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0032
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0032
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0033
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0033
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0034
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0034
https://www.snap4city.org
https://www.snap4city.org
https://www.disit.org
http://10.1109/ACCESS.2020.2968741
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0037
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0037
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0038
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0038
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0038
https://digitaltwin.snap4city.org/
https://flows.nodered.org/search?term=snap4city&tnqh_x0026;type=node&tnqh_x0026;type=flow&tnqh_x0026;type=collection
https://flows.nodered.org/search?term=snap4city&tnqh_x0026;type=node&tnqh_x0026;type=flow&tnqh_x0026;type=collection
https://github.com/disit
https://d3js.org/

SoftwareX 27 (2024) 101805

9

[43] VMS Milestone Systems A/S. 2024. [Web page] URL: https://www.milestonesys.
com/(Accessed on April 05, 2024).

[44] DISIT Lab. Snap4All, a mobile app for Android including Node-RED and Snap4City
LIBRARIES, 2023. [Computer software] URL: https://www.snap4city.org/824
(Accessed on April 05, 2024).

[45] J.M. Cantera Fonseca, F.G. Márquez, T. Jacobs. FIWARE NGSIv2 (Next generation
service interface, version 2) specification. 2024. (Version 2.0) [API specification]
URL: https://fiware.github.io/specifications/ngsiv2/stable/(Accessed on April 05,
2024).

[46] Bellini P, Benigni M, Billero R, Nesi P, Rauch N. Km4City ontology building vs data
harvesting and cleaning for smart-city services. Internat J Visual Lang Computi
2014. https://doi.org/10.1016/j.jvlc.2014.10.023. Elsevier.

[47] Bellini P, Fanfani M, Nesi P, Pantaleo G. Snap4City dashboard manager: a tool for
creating and distributing complex and interactive dashboards with no or low
coding. SoftwareX 2024;26:101729. https://doi.org/10.1016/j.
softx.2024.101729. ISSN 2352-7110.

[48] Tecnoteca Srl. openMAINT. 2024 (Version 2.3) [Computer software] URL: http
s://www.openmaint.org/en/home (Accessed on April 05, 2024).

[49] Adreani L, Bellini P, Fanfani M, Nesi P, Pantaleo G. Design and develop of a smart
city digital twin with 3d representation and user interface for what-if analysis. In:
Proceedings of the international conference on computational science and its
applications, Athens, Greece, 3–6 July 2023. Cham, Switzerland: Springer Nature;
2023. p. 531–48.

[50] Milestone Systems A/S. XProtect platform. 2024 [Computer software] URL: https
://www.milestonesys.com/products/software/xprotect/(Accessed on April 05,
2024).

[51] Collini E, Palesi LAI, Nesi P, Pantaleo G, Zhao W. Flexible thermal camera solution
for Smart city people detection and counting. Multimed Tools Appl 2024;83(7):
20457–85.

[52] Bellini P, Cenni D, Palesi LAI, Nesi P, Pantaleo G. A deep learning approach for
short term prediction of industrial plant working status. In: 2021 IEEE seventh
international conference on big data computing service and applications
(BigDataService). IEEE; 2021. p. 9–16.

[53] Bellini P, Palesi LAI, Giovannoni A, Nesi P. Managing complexity of data models
and performance in broker-based internet/web of things architectures. Internet
Things 2023:100834.

[54] DISIT Lab. Scientific publication list from DISIT Lab. 2024 [Web page] URL: htt
ps://www.snap4city.org/426 (Accessed on April 05, 2024).

[55] P. Nesi. Snap4City training course. 2024. [Web page] URL: https://www.snap4cit
y.org/577 (Accessed on April 05, 2024).

[56] P. Nesi. List of Snap4City registered instance installations. 2024. [Web page] URL:
https://www.snap4city.org/661 (Accessed on April 05, 2024).

[57] Alberti F, et al. Mobile mapping to support an integrated transport-territory
modelling approach. The international archives of the photogrammetry. Remote
Sens Spatial Informat Sci 2023;48:1–7.

[58] P. Nesi. List of Snap4City scenarios in which has been adopted. 2024. [Web page]
URL: https://www.snap4city.org/4 (Accessed on April 05, 2024).

[59] Snap4 s.r.l. 2024. [Web page] URL: https://www.snap4.eu/(Accessed on April 05,
2024).

[60] DAI – data analytics insights S.r.l. 2024. [Web page] URL: https://www.d-ai.
eu/(Accessed on April 18, 2024).

M. Fanfani et al.

https://www.milestonesys.com/
https://www.milestonesys.com/
https://www.snap4city.org/824
https://fiware.github.io/specifications/ngsiv2/stable/
https://doi.org/10.1016/j.jvlc.2014.10.023
https://doi.org/10.1016/j.softx.2024.101729
https://doi.org/10.1016/j.softx.2024.101729
https://www.openmaint.org/en/home
https://www.openmaint.org/en/home
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0049
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0049
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0049
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0049
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0049
https://www.milestonesys.com/products/software/xprotect/
https://www.milestonesys.com/products/software/xprotect/
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0051
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0051
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0051
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0052
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0052
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0052
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0052
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0053
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0053
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0053
https://www.snap4city.org/426
https://www.snap4city.org/426
https://www.snap4city.org/577
https://www.snap4city.org/577
https://www.snap4city.org/661
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0057
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0057
http://refhub.elsevier.com/S2352-7110(24)00176-6/sbref0057
https://www.snap4city.org/4
https://www.snap4.eu/
https://www.d-ai.eu/
https://www.d-ai.eu/

	Microservices’ libraries enabling server-side business logic visual programming for digital twins
	1 Motivation and significance
	2 Software description
	2.1 Software architecture
	2.2 Software functionalities
	3 Illustrative examples
	4 Impact
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

